A six-year-old child presented at 8 months of age with proximal muscle weakness and mild cardiac hypertrophy. Some alpha-glucosidase activity was detected in muscle but not in fibroblasts. As none of the two pathogenic mutations, [c.1933G>A]+[c.2702T>A] (Asp645Asn/Leu901Gln), led to detectable alpha-glucosidase activity upon expression in COS cells, the phenotype of the patient remained unexplained. A functionally comparable set of mutations, Asp645Asn/insGnt2243, was reported previously to cause classic infantile Pompe disease [Biochem Biophys Res Commun 244 (1998) 921]. We conclude that secondary genetic or environmental factors can be decisive for the phenotypic outcome of classic infantile versus childhood Pompe disease, when the acid alpha-glucosidase activity is extremely low.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nmd.2004.02.012 | DOI Listing |
Value Health
January 2025
Department of Cardiology and State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
Objective: Our objective was to develop and assess the psychometric properties of relevant bolt-on items for the EQ-5D-5L in patients with rare diseases (RDs).
Methods: Nineteen new EQ-5D-5L bolt-ons were developed based on literature review, expert input and qualitative interviews and focus groups with patients, caregivers and representatives of patient associations. A nationwide, cross-sectional, web-based survey in China included patients or caregivers of patients with 31 RDs in China (n=9,190).
Neuromuscul Disord
January 2025
ERN-NMD Center for Neuromuscular Disorders of Messina - Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy. Electronic address:
Late-onset Pompe disease (LOPD) includes patients from 1 year of age to adulthood. The vast heterogeneity in clinical manifestations and disease progression is not fully explained; however, a short disease duration and a young age seem to be good predictors of a better response to treatment. For this purpose, we investigated and followed up a cohort of 13 juvenile patients with LOPD from the clinical and therapeutic point of view, mainly pointing out the transition from presymptomatic to symptomatic status.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy.
Pompe disease is a neuromuscular disorder caused by a deficiency of the enzyme acid alpha-glucosidase (), which leads to lysosomal glycogen accumulation and progressive development of muscle weakness. Two distinct isoforms have been identified. In the infantile form, the weakness is often severe and leads to motor difficulties from the first few months of life.
View Article and Find Full Text PDFBiomedicines
January 2025
Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
An intriguing aspect of restrictive cardiomyopathies (RCM) is the microbiome role in the natural history of the disease. These cardiomyopathies are often difficult to diagnose and so result in significant morbidity and mortality. The human microbiome, composed of billions of microorganisms, influences various physiological and pathological processes, including cardiovascular health.
View Article and Find Full Text PDFItal J Pediatr
January 2025
Pediatrics Department, Genetics Unit, Mansoura University, Mansoura, Egypt.
Background: Pompe disease is a rare genetic disorder caused by a deficiency of the enzyme acid alpha-glucosidase. This condition leads to muscle weakness, respiratory problems, and heart abnormalities in affected individuals.
Methods: The aim of the study is to share our experience through cross sectional study of patients with infantile-onset Pompe disease (IOPD) with different genetic variations, resulting in diverse clinical presentations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!