Small peptide analogs to stromal derived factor-1 enhance chemotactic migration of human and mouse hematopoietic cells.

Exp Hematol

Division of Blood and Marrow Transplantation, Department of Medicine, and Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.

Published: May 2004

Stromal cell-derived factor 1 (SDF-1) is a chemokine that binds to the CXCR4 receptor. Its functions include acting as a chemotactic factor for hematopoietic stem and progenitor cells. We recently reported the synthesis of a small cyclized peptide analog (31 amino acids) of the terminal regions of SDF-1 that had biological function comparable to the native molecule (67 amino acids). In the present study, we investigated the effects of SDF-1 analogs (CTCE0021 and CTCE0214) in the chemotactic migration of peripheral blood hematopoietic cells (lineage-negative and CD34(+) cells). Enhanced chemotaxis of normal and G-CSF-mobilized hematopoietic cells was observed with both SDF-1 analogs in a dose-dependent manner. The increases were statistically significant (p < or = 0.016 by one-way ANOVA) at analog concentrations of 50 to 100 microg/mL. Colony-forming progenitor cells were not affected by exposure to the analogs up to 100 microg/mL. When different doses of the SDF-1 analog CTCE0214 were administered to mice, significant increases in circulating hematopoietic cells (identified by flow cytometry as lineage(low/-), Sca-1(+), and c-kit(+)) were observed after a single injection of 75 microg per animal. The effect was apparent at 4 hours and became significant at 24 hours. These results suggest that SDF-1 analogs can be considered for mobilization of hematopoietic stem cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exphem.2004.01.011DOI Listing

Publication Analysis

Top Keywords

hematopoietic cells
16
sdf-1 analogs
12
chemotactic migration
8
cells
8
hematopoietic stem
8
progenitor cells
8
amino acids
8
100 microg/ml
8
hematopoietic
6
sdf-1
6

Similar Publications

Autologous hematopoietic stem cell transplantation is used to restore bone marrow function after high-dose chemotherapy. For apheresis, granulocyte colony-stimulating factor (G-CSF) is standard of care, but obtaining sufficient stem cells can be challenging. Other mobilization agents include plerixafor and PEGylated G-CSF (PEG-G-CSF).

View Article and Find Full Text PDF

Acute inflammation induces acute megakaryopoiesis with impaired platelet production during fetal hematopoiesis.

Development

January 2025

Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.

Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis.

View Article and Find Full Text PDF

Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).

View Article and Find Full Text PDF

A 31-year-old male with a plasmacytoid dendritic blast cell neoplasm.

Ecancermedicalscience

November 2024

Internal Medicine Service, Sanatorio Sagrado Corazón, Buenos Aires, CP 1039, Argentina.

Plasmacytoid blast dendritic cell neoplasm is a rare subtype of acute leukaemia that represents less than 1% of haematologic neoplasms. It is characterised by skin involvement and leukaemic dissemination in the rest of the body. The immunophenotype is represented by the expression of CD4, CD56 and CD123.

View Article and Find Full Text PDF

L., a member of the Cannabaceae family, has been thoroughly investigated for its diverse therapeutic properties, primarily attributed to cannabinoids such as delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Secondary, metabolites like terpenes also exhibit pharmacological effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!