Objectives: Brief episodes of myocardial ischemia-reperfusion employed during reperfusion after a prolonged ischemic insult may attenuate the total ischemia-reperfusion injury. This phenomenon has been termed ischemic postconditioning. In the present study, we studied the possible effect of postconditioning on persistent reperfusion-induced ventricular fibrillation (VF) in the isolated rat heart model.

Methods: Isolated Langendorff-perfused rat hearts (n = 46) were subjected to 30 min of regional ischemia and reperfusion. The hearts with persistent VF (n = 11) present after 15 min of reperfusion were then randomly assigned into one of the two groups: (1) control hearts (n = 6) in which perfusion was continued without intervention; (2) postconditioned hearts (n = 5) subjected to 2 min of global ischemia followed by reperfusion. Left ventricular pressures, heart rate, coronary flow, and electrogram were monitored throughout the experiment.

Results: Conversion of VF into regular rhythm was observed in all hearts subjected to postconditioning. Regular beating was maintained by all postconditioned hearts during the subsequent reperfusion. None of the hearts in the control group had normal rhythm at the end of the experiment. At the end of reperfusion, the left ventricular developed pressure was lower in beating postconditioned hearts compared to the hearts that did not develop persistent VF.

Conclusions: Ischemic postconditioning possesses strong antiarrhythmic effect against persistent reperfusion-induced tachyarrhythmias. Postconditioning may be an interesting, novel adjunct strategy to protect the heart.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejcts.2004.02.003DOI Listing

Publication Analysis

Top Keywords

ischemic postconditioning
12
ischemia reperfusion
12
hearts subjected
12
postconditioned hearts
12
hearts
9
ventricular fibrillation
8
regular rhythm
8
persistent reperfusion-induced
8
subjected min
8
reperfusion hearts
8

Similar Publications

Background: Approximately half of the patients with acute ischemic stroke who receive intravenous thrombolysis (IVT) do not achieve an excellent outcome. Remote ischemic conditioning (RIC) as a promising neuroprotective treatment may improve clinical outcomes in this population. This study aimed to assess the efficacy and safety of RIC in patients with IVT.

View Article and Find Full Text PDF

Traumatic optic neuropathy (TON) has been regarded a vision-threatening condition caused by either ocular or blunt/penetrating head trauma, which is characterized by direct or indirect TON. Injury happens during sports, vehicle accidents and mainly in military war and combat exposure. Earlier, we have demonstrated that remote ischemic post-conditioning (RIC) therapy is protective in TON, and here we report that AMPKα1 activation is crucial.

View Article and Find Full Text PDF

Following the publication of the above paper, a concerned reader drew to the attention of the Editorial Office that the 'Sham' brain image featured in Fig. 1B on p. 23 was strikingly similar to an image that was published subsequently in the journal , whereas the control TUNEL assay data shown in Fig.

View Article and Find Full Text PDF
Article Synopsis
  • Ischemic post-conditioning (I-post C) is a method used to protect lung tissue from damage due to ischemia/reperfusion injury, but the exact mechanisms behind its protective effects are not well understood.
  • The study utilized RNA sequencing and various analyses to explore differentially expressed genes (DEGs) in rat lung tissues after treatment with I-post C, identifying significant pathways associated with inflammation and lung protection.
  • Results showed that I-post C reduced lung edema and inflammation, with 38 DEGs identified, including key molecules in inflammatory response and signaling pathways, notably downregulating certain inflammatory markers and pathways involved in neutrophil activation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!