Bead-based electrochemical immunoassay for bacteriophage MS2.

Anal Chem

Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, USA.

Published: May 2004

AI Article Synopsis

Article Abstract

Viruses are one of four classes of biothreat agents, and bacteriophage MS2 has been used as a simulant for biothreat viruses, such as smallpox. A paramagnetic bead-based electrochemical immunoassay has been developed for detecting bacteriophage MS2. The immunoassay sandwich was made by attaching a biotinylated rabbit anti-MS2 IgG to a streptavidin-coated bead, capturing the virus, and then attaching a rabbit anti-MS2 IgG-beta-galactosidase conjugate to another site on the virus. beta-Galactosidase converts p-aminophenyl galactopyranoside (PAPG) to p-aminophenol (PAP). PAPG is electroinactive at the potential at which PAP is oxidized to p-quinone imine (PQI), so the current resulting from the oxidation of PAP to PQI is directly proportional to the concentration of antigen in the sample. The immunoassay was detected with rotating disk electrode (RDE) amperometry and an interdigitated array (IDA) electrode. With an applied potential of +290 mV vs Ag/AgCl and a rotation rate of 3000 rpm, the detection limit was 200 ng/mL MS2 or 3.2 x 10(10) viral particles/mL with RDE amperometry. A trench IDA electrode was incorporated into a poly(dimethyl siloxane) channel, within which beads were collected, incubated with PAPG, and PAP generation was detected. The two working electrodes were held at +290 and -300 mV vs Ag/AgCl, and electrochemical recycling of the PAP/PQI couple by the IDA electrode lowered the limit of detection to 90 ng/mL MS2, or 1.5 x 10(10) MS2 particles/mL.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac035503cDOI Listing

Publication Analysis

Top Keywords

bacteriophage ms2
12
ida electrode
12
bead-based electrochemical
8
electrochemical immunoassay
8
rabbit anti-ms2
8
rde amperometry
8
ng/ml ms2
8
ms2 1010
8
ms2
6
immunoassay
4

Similar Publications

Bacteriophage infections in bacterial cultures pose a significant challenge to industrial bioprocesses, necessitating the development of innovative antiphage solutions. This study explores the antiphage potential of indigo carmine (IC), a common FDA-approved food additive. IC demonstrated selective inactivation of DNA phages (P001, T4, T1, T7, λ) with the EC values ranging from 0.

View Article and Find Full Text PDF

Background/objectives: Pathogen inactivation and harmful gene destruction from water just before drinking is the last line of defense to protect people from waterborne diseases. However, commonly used disinfection methods, such as chlorination, ultraviolet irradiation, and membrane filtration, experience several challenges such as continuous chemical dosing, the spread of antibiotic resistance genes (ARGs), and intensive energy consumption.

Methods: Here, we perform a simultaneous elimination of pathogens and ARGs in drinking water using local electric fields and in-situ generated trace copper ions (LEF-Cu) without external chemical dosing.

View Article and Find Full Text PDF

The COVID-19 pandemic has resulted in significant changes in our daily lives, including the widespread use of face masks. Face masks have been reported to reduce the transmission of viral infections by droplets; however, improper use and/or treatment of these masks can cause them to be contaminated, thereby reducing their efficacy. Moreover, regular replacement of face masks is essential to maintaining their effectiveness, which can be challenging in resource-limited healthcare settings.

View Article and Find Full Text PDF

Cheater viruses cannot replicate on their own yet replicate faster than the wild type (WT) when the 2 viruses coinfect the same cell. Cheaters must possess dual genetic features: a defect, which leads to their inability to infect cells on their own, and a selective advantage over WT during coinfection. Previously, we have discovered 2 point-mutant cheaters of the MS2 bacteriophage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!