Mitogens activate cell signaling and gene expression cascades that culminate in expression of cyclin D1 during the G(0)-to-G(1) transition of the cell cycle. Using cell cycle arrest in response to oxidative stress, we have delineated a dynamic program of chromatin trafficking of c-Fos and Fra-1 required for cyclin D1 expression during cell cycle reentry. In serum-stimulated lung epithelial cells, c-Fos was expressed, recruited to chromatin, phosphorylated at extracellular signal-regulated kinase 1- and 2 (ERK1,2)-dependent sites, and degraded prior to prolonged recruitment of Fra-1 to chromatin. Immunostaining showed that expression of nuclear c-Fos and that of cyclin D1 are mutually exclusive, whereas nuclear Fra-1 and cyclin D1 are coexpressed as cells traverse G(1). Oxidative stress prolonged the accumulation of phospho-ERK1,2 and phospho-c-Fos on chromatin, inhibited entry of Fra-1 into the nucleus, and blocked cyclin D1 expression. After induction of the immediate-early gene response in the presence of oxidative stress, inhibition of ERK1,2 signaling promoted degradation of c-Fos, recruitment of Fra-1 to chromatin, and expression of cyclin D1. Our data indicate that termination of nuclear ERK1,2 signaling is required for an exchange of Fra-1 for c-Fos on chromatin and initiation of cyclin D1 expression at the G(0)-to-G(1) transition of the cell cycle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC416393 | PMC |
http://dx.doi.org/10.1128/MCB.24.11.4696-4709.2004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!