AI Article Synopsis

Article Abstract

Tripeptidyl-peptidase I (TPP I, CLN2 protein) is a lysosomal aminopeptidase that cleaves off tripeptides from the free N termini of oligopeptides and also shows minor endopeptidase activity. TPP I is synthesized as a preproenzyme. Its proenzyme autoactivates under acidic conditions in vitro, resulting in a rapid conversion into the mature form. In this study, we examined the process of maturation in vitro of recombinant latent human TPP I purified to homogeneity from secretions of Chinese hamster ovary cells overexpressing TPP I cDNA. Autoprocessing of TPP I proenzyme was carried out at a wide pH range, from approximately 2.0 to 6.0, albeit with different efficiencies depending on the pH and the type of buffer. However, the acquisition of enzymatic activity in the same buffer took place in a narrower pH "window," usually in the range of 3.6-4.2. N-terminal sequencing revealed that mature, inactive enzyme generated during autoactivation at higher pH contained N-terminal extensions (starting at 6 and 14 amino acid residues upstream of the prosegment/mature enzyme junction), which could contribute to the lack of activity of TPP I generated in this manner. Autoprocessing was not associated with any major changes of the secondary structure of the proenzyme, as revealed by CD spectroscopy. Both the activation and proteolytic processing of the recombinant TPP I precursor were primarily concentration-independent. The addition of the mature enzyme did not accelerate the processing of the proenzyme. In addition, the maturation of the proenzyme was not affected by the presence of glycerol. Finally, the proenzyme with the active site mutated (S475L) was not processed in the presence of the wild-type enzyme. All of these findings indicate a primarily intramolecular (unimolecular) mechanism of TPP I activation and autoprocessing and suggest that in vivo mature enzyme does not significantly participate in its own generation from the precursor.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M400700200DOI Listing

Publication Analysis

Top Keywords

tpp
8
activity tpp
8
mature enzyme
8
proenzyme
6
enzyme
5
maturation human
4
human tripeptidyl-peptidase
4
tripeptidyl-peptidase vitro
4
vitro tripeptidyl-peptidase
4
tripeptidyl-peptidase tpp
4

Similar Publications

Hyperthyroidism is linked to several muscle disorders, including thyrotoxic myopathy, myasthenia gravis, and periodic paralysis. Thyrotoxic periodic paralysis (TPP) is a rare and potentially life-threatening neuromuscular condition that predominantly affects Asian males and is characterized by muscle weakness, hypokalemia, and thyrotoxicosis. Treatment involves potassium supplementation, and beta-blockers.

View Article and Find Full Text PDF

MITOCDNB DECREASES PLATELET ACTIVATION THROUGH ITS SELECTIVE ACTION ON MITOCHONDRIAL THIOREDOXIN REDUCTASE.

Biomed Pharmacother

January 2025

Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile. Electronic address:

Platelet inhibition is a fundamental objective to prevent and treat thrombus formation. Platelet activation depends on mitochondrial function. This study aims to identify a new mitochondria-targeting compound with antiplatelet activity at safe concentrations in vitro.

View Article and Find Full Text PDF

The chemical reduction of a pyracylene-hexa--hexabenzocoronene-(HBC)-fused nanographene TPP was investigated with K and Rb metals to reveal its multi-electron acceptor abilities. The reaction of TPP with the above alkali metals, monitored by UV-vis-NIR and H NMR spectroscopy, evidenced the stepwise reduction process. The use of different solvents and secondary ligands enabled isolation of single crystals of three different reduced states of TPP with 1, 2, and 3 electrons added to its π-system.

View Article and Find Full Text PDF

Cryo-EM structure determination of protein-free RNAs has remained difficult with most attempts yielding low to moderate resolution and lacking nucleotide-level detail. These difficulties are compounded for small RNAs as cryo-EM is inherently more difficult for lower molecular weight macromolecules. Here we present a strategy for fusing small RNAs to a group II intron that yields high resolution structures of the appended RNA.

View Article and Find Full Text PDF

Atomically precise silver-based bimetallic clusters for electrocatalytic urea synthesis.

Natl Sci Rev

February 2025

Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.

Electrocatalytic urea synthesis from CO and nitrate holds immense promise as a sustainable strategy, but its complicated synthesis steps and controversial C-N coupling mechanism restrict the design of efficient catalysts. Atomically precise metal cluster materials are ideal model catalysts for investigating the C-N coupling issues. Here we synthesize two atomically precise bimetallic clusters, AgPd(PTFE)(TPP) and AgAu(PTFE)(DPPP), both with icosahedral cores and similar ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!