Calcium/calmodulin-dependent protein kinase IV (CaMKIV) is a member of the broad substrate specificity class of Ca(2+)/calmodulin (CaM)-dependent protein kinases and functions as a potent stimulator of Ca(2+)-dependent gene expression. Activation of CaMKIV is a transient, tightly regulated event requiring both Ca(2+)/CaM binding and phosphorylation of the kinase on T200 by an upstream CaMK kinase (CaMKK). Previously, CaMKIV was shown to stably associate with protein serine/threonine phosphatase 2A (PP2A), which was proposed to play a role in negatively regulating the kinase. Here we report that the Ca(2+)/CaM binding-autoinhibitory domain of CaMKIV is required for association of the kinase with PP2A and that binding of PP2A and Ca(2+)/CaM appears to be mutually exclusive. We demonstrate that inhibition of the CaMKIV/PP2A association in cells results in enhanced CaMKIV-mediated gene transcription that is independent of Ca(2+)/CaM. The enhanced transcriptional activity correlates with the elevated level of phospho-T200 that accumulates when CaMKIV is prevented from interacting with PP2A. Collectively, these data suggest a molecular basis for the sequential activation and inactivation of CaMKIV. First, in response to an increase in intracellular Ca(2+), CaMKIV binds Ca(2+)/CaM and becomes phosphorylated on T200 by CaMKK. These events result in the generation of autonomous activity required for CaMKIV-mediated transcriptional regulation. The CaMKIV-associated PP2A then dephosphorylates CaMKIV T200, thereby terminating autonomous activity and CaMKIV-mediated gene transcription.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M404523200DOI Listing

Publication Analysis

Top Keywords

calcium/calmodulin-dependent protein
8
protein kinase
8
serine/threonine phosphatase
8
camkiv
8
camkiv-mediated gene
8
gene transcription
8
autonomous activity
8
kinase
6
ca2+/cam
5
pp2a
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!