Ghrelin, an endogenous ligand for the GH secretagogue receptor, induces GH secretion, food intake, and positive energy balance. Although ghrelin exhibits a variety of hormonal actions, the mechanisms regulating ghrelin expression and secretion remain unclear. To understand regulation of human ghrelin gene expression, we examined the genomic structure of approximately 5,000 bp of the 5'-flanking region of the human ghrelin gene. We performed rapid amplification of cDNA ends to estimate transcriptional start sites, indicating that there are two transcriptional initiation sites within the human ghrelin gene. Both transcripts were equally expressed in the human stomach, whereas the longer transcript was mainly expressed in a human medullary thyroid carcinoma (TT) cell line. Functional analysis using promoter-reporter constructs containing the 5'-flanking region of the gene indicated that the sequence residing within the -349 to -193 region is necessary for human ghrelin promoter function in TT cells. Within this region existed several consensus sequences for a number of transactivating regulatory proteins, including an E-box site. Destruction of this site decreased to 40% of the promoter activity. The upstream region of the promoter has two additional putative E-box sites, and site-directed mutagenesis suggested that these are also involved in promoter activation. Electrophoretic mobility shift assays demonstrated that the upstream stimulatory factor specifically bound to these E-box elements. These results suggest a potential role for upstream stimulatory factor transcription factors in the regulation of human ghrelin expression.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2003-1718DOI Listing

Publication Analysis

Top Keywords

human ghrelin
24
ghrelin gene
16
5'-flanking region
12
region human
12
ghrelin
9
genomic structure
8
human
8
ghrelin expression
8
regulation human
8
expressed human
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!