Smooth muscle cells (SMCs) from prosthetic vascular grafts constitutively secrete higher levels of collagen than aortic SMCs. Lipid oxidation products accumulate in grafts, and we postulated that they stimulate SMC production of collagen. The effect of oxidized low-density lipoprotein (oxLDL) on type I collagen secretion by aortic and graft SMCs was compared. SMCs isolated from the canine thoracic aorta or Dacron thoracoabdominal grafts (n = 10) were incubated with native LDL or oxLDL (0-400 microg cholesterol/ml) for 72 h. Type I collagen in the conditioned medium was measured by ELISA. OxLDL increased collagen production by graft SMCs from 4.1 +/- 0.3 to 11.0 +/- 0.4 ng/microg DNA and by aortic SMCs from 2.3 +/- 0.1 to 3.5 +/- 0.2 ng/microg DNA. Native LDL had little effect. LY-83583, a superoxide generator, stimulated a dramatic increase in collagen secretion by graft SMCs and a smaller but significant elevation by aortic SMCs. OxLDL has been shown to increase PDGF production by graft SMCs, and PDGF can stimulate collagen production. Anti-PDGF antibody inhibited the increase in collagen production by graft SMCs that was stimulated by oxLDL, implicating PDGF as one mechanism of oxLDL-induced collagen production. Lipid oxidation products that accumulate in prosthetic vascular grafts can cause an oxidative stress that stimulates PDGF production by graft SMCs that in turn stimulates collagen production, contributing to the progression of intimal hyperplasia.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00228.2004DOI Listing

Publication Analysis

Top Keywords

graft smcs
24
collagen production
20
aortic smcs
16
production graft
16
collagen secretion
12
smcs
12
collagen
11
secretion graft
8
prosthetic vascular
8
vascular grafts
8

Similar Publications

Synthetic vascular grafts are promising conduits for small caliber arteries. However, due to restenosis caused by intimal hyperplasia, they cannot keep long patency in vivo. In this work, through single cell RNA sequencing, we found that thrombospondin-1 (THBS1) was highly expressed in the regenerated smooth muscle cells (SMCs) in electrospun polycaprolactone (PCL) vascular grafts.

View Article and Find Full Text PDF
Article Synopsis
  • Vein grafts are critical for treating coronary artery disease, but neointimal hyperplasia (NIH) poses a significant challenge to their long-term success, with current identification and intervention methods being insufficient.
  • Researchers conducted a study using rats to observe the NIH development process after vein grafting while examining gene expression and specific markers related to NIH through various analytical methods.
  • The results showed that repair cells from outside the graft contribute significantly to NIH, with the protein Fhl1 playing a protective role against inflammation and cell proliferation, offering potential targets for improved treatments.
View Article and Find Full Text PDF

Dynamic three dimensional environment for efficient and large scale generation of smooth muscle cells from hiPSCs.

Stem Cell Res Ther

December 2024

Department of Biomedical Engineering, The University of Alabama at Birmingham, Volker Hall, 1670 University Boulevard, Birmingham, AL, 35255, USA.

Article Synopsis
  • Chronic ischemic limb disease can lead to amputations, making it a major medical concern, and smooth muscle cells (SMCs) play a key role in various cardiovascular issues.
  • Researchers tested two new methods for converting human induced-pluripotent stem cells (hiPSCs) into SMCs, comparing traditional 2D techniques with innovative 3D followed by 2D approaches.
  • Results showed that the 3D + 2D protocols significantly increased the number of hiPSC-SMCs produced and confirmed their effectiveness through various in-vitro and in-vivo experiments, indicating a promising avenue for treating ischemic limb conditions.
View Article and Find Full Text PDF

Expanded polytetrafluoroethylene (ePTFE) failed to achieve clinical application in the field of small-diameter blood vessels due to its lack of elasticity in the circumferential direction and high stiffness. Excellent multidirectional elasticity and dynamic compliance matching with natural blood vessels are important means to solve the problem of acute thrombosis and poor long-term patency. Herein, novel PTFE spinning blood vessels were prepared by the PTFE emulsion electrospinning process, which not only presented good bidirectional elasticity but also promoted the adhesion and proliferation of endothelial cells and induced the contractile expression of SMCs.

View Article and Find Full Text PDF

Coronary artery disease leads to over 360,000 deaths annually in the United States, and off-the-shelf bypass graft options are currently limited and/or have high failure rates. Tissue-engineered vascular grafts (TEVGs) present an attractive option, though the promising mesenchymal stem cell (MSC)-based implants face uncertain regulatory pathways. In this study, "artificial MSCs" (ArtMSCs) were fabricated by encapsulating MSC-conditioned media (CM) in poly(lactic-co-glycolic acid) microparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!