The rates of oxidation of Fe(II) by H(2)O(2) in the presence of sodium perchlorate, sodium nitrate, sodium chloride and sodium sulfate salts (0-1M) have been compared in the study. Experiments were carried out in a batch reactor, in the dark, at pH <3, 25+/-0.5 degrees C and at controlled ionic strength (< or =1M). The experimental results showed that the rates of oxidation of Fe(II) in the presence of chloride, nitrate and perchlorate were identical. In the presence of sulfate, the rate of oxidation of Fe(II) was faster and depended on the pH and the concentration of sulfate. The pseudo second-order rate constants for the reaction of H(2)O(2) with Fe(2+), FeCl(+) and FeSO(4) were determined as 55+/-1, 55+/-1 and 78+/-3 M(-1) s(-1), respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2004.01.033 | DOI Listing |
JACS Au
January 2025
Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States.
Our newly developed AshPhos ligand represents a significant advancement in Buchwald-Hartwig aminations, overcoming many limitations of existing ligands. Created from affordable and accessible materials, AshPhos enhances catalytic performance, especially for extremely difficult substrates, by emphasizing the principles of ligand chelation and cooperativity. Its successful synthesis and application in catalytic aminations underscore its potential for use in the sustainable synthesis of compounds important to medicinal chemistry, materials, and energy.
View Article and Find Full Text PDFSci Rep
January 2025
School of Health Preservation and Rehabilitation, Chengdu University of TCM, Shierqiao Road, Chengdu, 610075, Sichuan, People's Republic of China.
Despite the established link between chronic high salt diet (HSD) and an increase in gut inflammation, the effect of HSD on the integrity of the intestinal barrier remains understudied. The present study aims to investigate the impact of HSD on the intestinal barrier in rats, encompassing its mechanical, mucous, and immune components. Expression levels of intestinal tight junction proteins and mucin-2 (MUC2) in SD rats were analyzed using immunofluorescence.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Urology, Songjiang hospital affiliated to Shanghai jiaotong university school of medicine, Shanghai, China.
Kidney stones, a common urological disease, may involve the brain-kidney axis in their formation, though the specific mechanism remains unclear. This study aimed to investigate the effects of blue light on relevant metabolic indicators and oxidative stress status in rats with kidney stones through the brain-kidney axis. A rat model of kidney stones was established by administering 1% ethylene glycol and 2% ammonium chloride.
View Article and Find Full Text PDFNat Commun
January 2025
School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
Designing asymmetrical structures is an effective strategy to optimize metallic catalysts for electrochemical carbon dioxide reduction reactions. Herein, we demonstrate a transient pulsed discharge method for instantaneously constructing graphene-aerogel supports asymmetric copper nanocluster catalysts. This process induces the convergence of copper atoms decomposed by copper chloride onto graphene originating from the intense current pulse and high temperature.
View Article and Find Full Text PDFBMJ Open Respir Res
January 2025
Alder Hey Children's NHS Foundation Trust, Liverpool, UK.
Background: Cystic fibrosis (CF) is associated with a historically high treatment burden which causes anxiety and exhaustion for parents of children with CF, especially in the early years of a child's life. Recently, a new medication, elexacaftor/tezacaftor/ivacaftor (ETI), has become available to some people with CF, which has had a significant impact on the quality of life of older children and adults. This medication will soon be available for children ages 2-5 in the UK.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!