Success of groundwater remediation is typically controlled via snapshot analysis of selected chemical substances or physical parameters. Biological parameters, i.e. ecotoxicological assays, are rarely employed. Hence the aim of the study was to develop a bioassay tool, which allows an on line monitoring of contaminated groundwater, as well as a toxicity reduction evaluation (TRE) of different remediation techniques in parallel and may furthermore be used as an additional tool for process control to supervise remediation techniques in a real time mode. Parallel testing of groundwater remediation techniques was accomplished for short and long time periods, by using the energy dependent luminescence of the bacterium Vibrio fischeri as biological monitoring parameter. One data point every hour for each remediation technique was generated by an automated biomonitor. The bacteria proved to be highly sensitive to the contaminated groundwater and the biomonitor showed a long standing time despite the highly corrosive groundwater present in Bitterfeld, Germany. The bacterial biomonitor is demonstrated to be a valuable tool for remediation success evaluation. Dose response relationships were generated for the six quantitatively dominant groundwater contaminants (2-chlortoluene, 1,2- and 1,4-dichlorobenzene, monochlorobenzene, ethylenbenzene and benzene). The concentrations of individual volatile organic chemicals (VOCs) could not explain the observed effects in the bacteria. An expected mixture toxicity was calculated for the six components using the concept of concentration addition. The calculated EC(50) for the mixture was still one order of magnitude lower than the observed EC(50) of the actual groundwater. The results pointed out that chemical analysis of the six most quantitative substances alone was not able to explain the effects observed with the bacteria. Thus chemical analysis alone may not be an adequate tool for remediation success evaluation in terms of toxicity reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2004.01.007DOI Listing

Publication Analysis

Top Keywords

remediation techniques
16
toxicity reduction
12
groundwater remediation
12
reduction evaluation
8
groundwater
8
remediation
8
contaminated groundwater
8
tool remediation
8
remediation success
8
success evaluation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!