Biochemical effects of low level exposure to soman vapour.

Cent Eur J Public Health

Purkynĕ Military Medical Academy, Department of Toxicology, Hradec Králové, Czech Republic.

Published: March 2004

The aim of this study was to demonstrate changes in acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities, tyrosine aminotransferase activity (TAT) and plasma corticosterone level, neuroexcitability and behavior following 24 hours and 4 weeks of soman sublethal inhalation exposure at low level. AChE activity in erythrocytes and BuChE activity in plasma was decreased (dependent on the concentration of soman) 24 h and 4 weeks after the exposure. Similar decrease in AChE activity in different brain parts was observed. One of stressogenic parameters (TAT) was changed after 24 h exposure only. 4 weeks after the exposure, these parameters (corticosterone and TAT) were in the range of normal values. Behaviour of experimental animals was changed 24 h after the exposure persisting 4 weeks after the exposure as well as neuroexcitability.

Download full-text PDF

Source

Publication Analysis

Top Keywords

weeks exposure
12
low level
8
ache activity
8
changed exposure
8
exposure
7
biochemical effects
4
effects low
4
level exposure
4
exposure soman
4
soman vapour
4

Similar Publications

Solid lipid nanoparticles (SLNs) have gained interest as drug delivery carriers due to their efficient cellular internalization and increased therapeutic effect of the loaded drug, with minimal side effects. Although recently several studies have shown the possibility to administer SLNs during pregnancy to vehicle mRNA to the placenta, data about the effect of premating exposure to SLNs on pregnancy outcome are scant. Considering that assumption of drug-delivering nanocarriers in reproductive age may potentially affect women's reproductive health, the aim of the present study was to evaluate whether repeated oral administration of SLNs to female mice prior to mating would influence key pregnancy outcomes.

View Article and Find Full Text PDF

Introduction: Access to electric light has exposed living organisms to varying intensities of light throughout the 24 h day. Dim light at night (DLAN) is an inappropriate signal for the biological clock, which is responsible for the circadian organization of physiology. During the gestational period, physiological adaptations occur to ensure a successful pregnancy and optimal fetal development.

View Article and Find Full Text PDF

Noise-induced hearing loss is one of the most common forms of hearing loss in adults and also one of the most common occupational diseases. Extensive previous work has shown that the highly sensitive synapses of the inner hair cells (IHCs) may be the first target for irreparable damage and permanent loss in the noise-exposed cochlea, more precisely in the cochlear base. However, how such synaptic loss affects the synaptic physiology of the IHCs in this particularly vulnerable part of the cochlea has not yet been investigated.

View Article and Find Full Text PDF

Predation can alter diverse ecological processes, including host-parasite interactions. Selective predation, whereby predators preferentially feed on certain prey types, can affect prey density and selective pressures. Studies on selective predation in infected populations have primarily focused on predators preferentially feeding on infected prey.

View Article and Find Full Text PDF

Importance: Cervical cancer is the fourth most common cancer among women globally and a significant cause of cancer-related deaths. Understanding the impact of cervical cancer diagnosed during pregnancy on maternal, delivery, and neonatal outcomes is crucial for improving clinical management and outcomes for affected women and their children.

Objective: To determine the effects of cervical cancer diagnosed during pregnancy on maternal, delivery, and neonatal outcomes using a population based, American database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!