The ansamycin antibiotic, geldanamycin, targets the hsp 90 protein chaperone and promotes ubiquitin-dependent proteasomal degradation of its numerous client proteins. Bortezomib is a specific and potent proteasome inhibitor. Both bortezomib and the geldanamycin analogue, 17-N-allylamino-17-demethoxy geldanamycin, are in separate clinical trials as new anticancer drugs. We hypothesized that destabilization of hsp 90 client proteins with geldanamycin, while blocking their degradation with bortezomib, would promote the accumulation of aggregated, ubiquitinated, and potentially cytotoxic proteins. Indeed, geldanamycin plus bortezomib inhibited MCF-7 tumor cell proliferation significantly more than either drug alone. Importantly, while control cells were unaffected, human papillomavirus E6 and E7 transformed fibroblasts were selectively sensitive to geldanamycin plus bortezomib. Geldanamycin alone slightly increased protein ubiquitination, but when geldanamycin was combined with bortezomib, protein ubiquitination was massively increased, beyond the amount stabilized by bortezomib alone. In geldanamycin plus bortezomib-treated cells, ubiquitinated proteins were mostly detergent insoluble, indicating that they were aggregated. Individually, both geldanamycin and bortezomib induced hsp 90, hsp 70, and GRP78 stress proteins, but the drug combination superinduced these chaperones and caused them to become detergent insoluble. Geldanamycin plus bortezomib also induced the formation of abundant, perinuclear vacuoles, which were neither lysosomes nor autophagosomes and did not contain engulfed cytosolic ubiquitin or hsp 70. Fluorescence marker experiments indicated that these vacuoles were endoplasmic reticulum derived and that their formation was prevented by cycloheximide, suggesting a role for protein synthesis in their genesis. These observations support a mechanism whereby the geldanamycin plus bortezomib combination simultaneously disrupts hsp 90 and proteasome function, promotes the accumulation of aggregated, ubiquitinated proteins, and results in enhanced antitumor activity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

geldanamycin bortezomib
20
protein ubiquitination
12
geldanamycin
12
bortezomib geldanamycin
12
bortezomib
10
hsp proteasome
8
antitumor activity
8
client proteins
8
proteins geldanamycin
8
accumulation aggregated
8

Similar Publications

Chorea-acanthocytosis is one of the hereditary neurodegenerative disorders known as the neuroacanthocytoses. Chorea-acanthocytosis is characterized by circulating acanthocytes deficient in chorein, a protein of unknown function. We report here for the first time that chorea-acanthocytosis red cells are characterized by impaired autophagy, with cytoplasmic accumulation of active Lyn and of autophagy-related proteins Ulk1 and Atg7.

View Article and Find Full Text PDF

B-cell lymphoma 2 (BCL-2) ovarian killer (BOK) is a BCL-2 family protein with high homology to the multidomain proapoptotic proteins BAX and BAK, yet Bok(-/-) and even Bax(-/-)Bok(-/-) and Bak(-/-)Bok(-/-) mice were reported to have no overt phenotype or apoptotic defects in response to a host of classical stress stimuli. These surprising findings were interpreted to reflect functional compensation among the BAX, BAK, and BOK proteins. However, BOK cannot compensate for the severe apoptotic defects of Bax(-/-)Bak(-/-) mice despite its widespread expression.

View Article and Find Full Text PDF

Withanolide E sensitizes renal carcinoma cells to TRAIL-induced apoptosis by increasing cFLIP degradation.

Cell Death Dis

February 2015

1] Basic Research Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA [2] Laboratory for Experimental Immunology and Cancer Inflammation Program, NCI-Frederick, Frederick, MD, USA.

Withanolide E, a steroidal lactone from Physalis peruviana, was found to be highly active for sensitizing renal carcinoma cells and a number of other human cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. Withanolide E, the most potent and least toxic of five TRAIL-sensitizing withanolides identified, enhanced death receptor-mediated apoptotic signaling by a rapid decline in the levels of cFLIP proteins. Other mechanisms by which TRAIL sensitizers have been reported to work: generation of reactive oxygen species (ROS), changes in pro-and antiapoptotic protein expression, death receptor upregulation, activation of intrinsic (mitochondrial) apoptotic pathways, ER stress, and proteasomal inhibition proved to be irrelevant to withanolide E activity.

View Article and Find Full Text PDF

Background: Multiple myeloma (MM) is at present an incurable malignancy, characterized by apoptosis-resistant tumor cells. Interferon (IFN) treatment sensitizes MM cells to Fas-induced apoptosis and is associated with an increased activation of Signal transducer and activator of transcription (Stat)1. The role of Stat1 in MM has not been elucidated, but Stat1 has in several studies been ascribed a pro-apoptotic role.

View Article and Find Full Text PDF

Background: Platinum compounds such as cisplatin and carboplatin are DNA crosslinking agents widely used for cancer chemotherapy. However, the effectiveness of platinum compounds is often tempered by the acquisition of cellular drug resistance. Until now, no pharmacological approach has successfully overcome cisplatin resistance in cancer treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!