The entry of ecotropic murine leukemia virus (MLV) into cells requires the interaction of the envelope protein (Env) with its receptor, mouse cationic amino acid transporter 1 (mATRC1). An aspartic acid-to-lysine change at position 84 (D84K) of ecotropic Moloney MLV Env abolishes virus binding and infection. We recently identified lysine 234 (rK234) in mATRC1 as a residue that influences virus binding and infection. Here we show that D84K virus infection increased 3,000-fold on cells expressing receptor with an rK234A change and 100,000-fold on cells expressing an rK234D change. The stronger complementation of D84K virus infection by rK234D than by the rK234A receptor suggests that although the major reason for loss of infection of D84K and D84R virus is due to steric hindrance and charge repulsion, the loss of an interaction of D84 with receptor appears to contribute as well. Taken together, these results indicate that D84 is very close to rK234 of mATRC1 in the bound complex and there is likely an interaction between them. The definitive localization of the receptor binding site on SU should facilitate the design of chimeric envelope proteins that target infection to new receptors by replacing the receptor binding site with an exogenous ligand sequence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC415786PMC
http://dx.doi.org/10.1128/JVI.78.11.5766-5772.2004DOI Listing

Publication Analysis

Top Keywords

virus binding
8
binding infection
8
rk234 matrc1
8
infection d84k
8
d84k virus
8
virus infection
8
cells expressing
8
receptor binding
8
binding site
8
receptor
7

Similar Publications

What Is Known About This Topic?: Global human cases of zoonotic influenza A(H5N6) have increased significantly in recent years, primarily due to widespread circulation of clade 2.3.4.

View Article and Find Full Text PDF

Reducing off-target expression of mRNA therapeutics and vaccines in the liver with microRNA binding sites.

Mol Ther Methods Clin Dev

March 2025

Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55902, USA.

Lipid nanoparticles (LNPs) are often liver tropic, presenting challenges for LNP-delivered mRNA therapeutics intended for other tissues, as off-target expression in the liver may increase side effects and modulate immune responses. To avoid off-target expression in the liver, miR-122 binding sites have been used by others in viral and non-viral therapeutics. Here, we use a luciferase reporter system to compare different copy numbers and insertion locations of miR-122 binding sequences to restrict liver expression.

View Article and Find Full Text PDF

Background Different pathologies are encountered more often in human immunodeficiency virus (HIV)-infected patients, such as bacterial, fungal, viral infection, and neoplastic diseases. Recently, studies have shown that HIV-infected individuals have poorer oral health outcomes, worse dentition, and aggressive forms of periodontitis. This study aims to investigate the dental and periodontal status of HIV-infected patients, the correlation between CD4+ level and the CD4 percentage with dentition, and periodontal status.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) infects cells by attaching to heparan sulfate proteoglycans (HSPG) and Na/taurocholate cotransporting polypeptide (NTCP). The endothelial lipase LIPG bridges HSPG and HBV, facilitating HBV attachment. From a randomized peptide expression library, we identified a short sequence binding to LIPG.

View Article and Find Full Text PDF

A New target of ischemic ventricular arrhythmias-ITFG2.

Eur J Pharmacol

January 2025

Department of Basic Medicine, Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, Fujian 361023, P. R. China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China. Electronic address:

ITFG2 is an intracellular protein known to modulate the immune response of T-cells. Our previous investigation revealed that ITFG2 specifically targets ATP5b to regulate ATP energy metabolism and maintain mitochondrial function, thereby protecting the heart from ischemic injury. However, the role of ITFG2 in ischemic ventricular arrhythmias and its underlying mechanisms have not been previously reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!