It has been postulated that endogenous kynurenic acid (KYNA) modulates alpha7* nicotinic acetylcholine receptor (nAChR) and NMDA receptor activities in the brain.a To test this hypothesis, alpha7* nAChR and NMDA receptor functions were studied in mice with a targeted null mutation in the gene encoding kynurenine aminotransferase II (mKat-2-/- mice), an enzyme responsible for brain KYNA synthesis. At 21 postnatal days, mKat-2-/- mice had lower hippocampal KYNA levels and higher spontaneous locomotor activity than wild-type (WT) mice. At this age, alpha7* nAChR activity induced by exogenous application of agonists to CA1 stratum radiatum interneurons was approximately 65% higher in mKat-2-/- than WT mice. Binding studies indicated that the enhanced receptor activity may not have resulted from an increase in alpha7* nAChR number. In 21-d-old mKat-2-/- mice, endogenous alpha7* nAChR activity in the hippocampus was also increased, leading to an enhancement of GABAergic activity impinging onto CA1 pyramidal neurons that could be reduced significantly by acute exposure to KYNA (100 nM). The activities of GABA(A) and NMDA receptors in the interneurons and of alpha3beta4* nAChRs regulating glutamate release onto these neurons were comparable between mKat-2-/- and WT mice. By 60 d of age, KYNA levels and GABAergic transmission in the hippocampus and locomotor activity were similar between mKat-2-/- and WT mice. Our findings that alpha7* nAChRs are major targets for KYNA in the brain may provide insights into the pathophysiology of schizophrenia and Alzheimer's disease, disorders in which brain KYNA levels are increased and alpha7* nAChR functions are impaired.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6729395PMC
http://dx.doi.org/10.1523/JNEUROSCI.5631-03.2004DOI Listing

Publication Analysis

Top Keywords

mkat-2-/- mice
24
alpha7* nachr
20
kyna levels
12
kynurenine aminotransferase
8
endogenous kynurenic
8
kynurenic acid
8
nachr nmda
8
nmda receptor
8
mice
8
brain kyna
8

Similar Publications

Excessive activation of NMDA receptors results in excitotoxic nerve cell loss, which is believed to play a critical role in the pathophysiology of Huntington's disease (HD) and several other catastrophic neurodegenerative diseases. Kynurenic acid (KYNA), a neuroinhibitory tryptophan metabolite, has neuroprotective properties and may serve as an endogenous anti-excitotoxic agent. This hypothesis was tested in the striatum, using mice with a targeted deletion of kynurenine aminotransferase II (KAT II), a major biosynthetic enzyme of KYNA in the mammalian brain.

View Article and Find Full Text PDF

Biochemical and phenotypic abnormalities in kynurenine aminotransferase II-deficient mice.

Mol Cell Biol

August 2004

Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.

Kynurenic acid (KYNA) can act as an endogenous modulator of excitatory neurotransmission and has been implicated in the pathogenesis of several neurological and psychiatric diseases. To evaluate its role in the brain, we disrupted the murine gene for kynurenine aminotransferase II (KAT II), the principal enzyme responsible for the synthesis of KYNA in the rat brain. mKat-2(-/-) mice showed no detectable KAT II mRNA or protein.

View Article and Find Full Text PDF

It has been postulated that endogenous kynurenic acid (KYNA) modulates alpha7* nicotinic acetylcholine receptor (nAChR) and NMDA receptor activities in the brain.a To test this hypothesis, alpha7* nAChR and NMDA receptor functions were studied in mice with a targeted null mutation in the gene encoding kynurenine aminotransferase II (mKat-2-/- mice), an enzyme responsible for brain KYNA synthesis. At 21 postnatal days, mKat-2-/- mice had lower hippocampal KYNA levels and higher spontaneous locomotor activity than wild-type (WT) mice.

View Article and Find Full Text PDF

Genomic organization and expression analysis of mouse kynurenine aminotransferase II, a possible factor in the pathophysiology of Huntington's disease.

Mamm Genome

September 1999

Genetics and Molecular Biology Branch, National Human Genome Research Institute, Building 49, Room 3A26, 49 Convent Drive MSC 4442, National Institutes of Health, Bethesda, Maryland 20892-4442, USA.

Decreased levels of the endogenous neuroprotectant kynurenic acid (KYNA) have been observed in the brain of Huntington's Disease (HD) patients and may be related to neuronal loss in this disorder. This reduction may be caused by a dysfunction of kynurenine aminotransferase II (KAT II), the major enzyme responsible for the synthesis of KYNA in the brain. Towards understanding the role of KAT II in HD, we isolated and characterized the cDNA sequence and determined the genomic organization of mouse KAT II (mKat-2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!