Vascular endothelial growth factor (VEGF) is produced by several cell types in the kidney, and its expression is tightly regulated for the maintenance of normal renal physiology. Increases or decreases in its expression are associated with proteinuria and renal disease. Recently, we found that the expression of VEGF is markedly induced following interactions between CD40 ligand (CD40L) and CD40. Here, endothelial cells (EC) or Jurkat T cell lines were transiently transfected with luciferase reporter constructs under the control of the human VEGF promoter and were treated with human soluble CD40L (sCD40L). We identified a CD40-responsive 68-bp region (bp -50 to +18) of the promoter and 43 bp within this region (bp -25 to +18) that have 97% homology to a sequence of CpG dinucleotides. A computerized search revealed that the CpG region has putative binding domains for the transcriptional repressor protein methyl CpG binding protein-2 (MeCP2). In EMSA, we found that the 43-bp methylated sequence formed four complex(es) with nuclear extracts from untreated EC and reduced binding of at least one complex when nuclear lysates from sCD40L-activated EC (30 min) were used. Supershift analysis using anti-MeCP2 demonstrated that most of the complex(es) in both untreated and sCD40L-activated EC involved interactions between the 43-bp DNA and MeCP2. In addition, we found that other CpG binding proteins may also interact with this region of the promoter. Taken together, this is the first demonstration that CpG binding transcriptional repressor proteins including MeCP2 may be of importance in VEGF biology.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00070.2004DOI Listing

Publication Analysis

Top Keywords

cpg binding
12
vascular endothelial
8
endothelial growth
8
growth factor
8
68-bp region
8
region promoter
8
transcriptional repressor
8
cpg
6
region
5
binding
5

Similar Publications

Rett syndrome (RTT), which predominantly affects females, arises in most cases from mutations in the () gene. When MeCP2 is impaired, it disrupts the regulation of numerous genes, causing the production of dysfunctional proteins associated with various multi-systemic issues in RTT. In this review, we explore the current insights into molecular signaling related to monoamines, immune response, and mitochondrial function, and their implications for the pathophysiology of RTT.

View Article and Find Full Text PDF

Background: Neurodevelopmental disorders (NDDs) affect approximately 15% of children and adolescents worldwide. This group of disorders is often polygenic with varying risk factors, with many associated genes converging on shared molecular pathways, including chromatin regulation and transcriptional control. Understanding how NDD-associated chromatin regulators and protein complexes orchestrate these regulatory pathways is crucial for elucidating NDD pathogenesis and developing targeted therapeutic strategies.

View Article and Find Full Text PDF

Di(2-ethylhexyl) phthalate (DEHP), a known endocrine-disrupting chemical, is a plasticizer found in many common consumer products. High levels of DEHP exposure have been linked to adverse pregnancy outcomes, yet little is known about how it affects human uterine functions. We previously reported that the estrogen-regulated transcription factor hypoxia-inducible factor 2 alpha (HIF2α) promotes the expression of Rab27b, which controls the trafficking and secretion of extracellular vesicles (EVs).

View Article and Find Full Text PDF

Methyl CpG binding protein 2 (MeCP2) is a chromatin-associated protein that remains enigmatic despite more than 30 years of research, primarily due to the ever-growing list of its molecular functions, and, consequently, its related pathologies. Loss of function MECP2 mutations cause the neurodevelopmental disorder Rett syndrome (RTT); in addition, dysregulation of MeCP2 expression and/or function are involved in numerous other pathologies, but the mechanisms of MeCP2 regulation are unclear. Advancing technologies and burgeoning mechanistic theories assist our understanding of the complexity of MeCP2 but may inadvertently cloud it if not rigorously tested.

View Article and Find Full Text PDF

The Management of Bone Defects in Rett Syndrome.

Calcif Tissue Int

January 2025

Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.

Rett syndrome (RS) is a rare neurodevelopmental disorder primarily caused by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene, responsible for encoding MECP2 which plays a pivotal role in regulating gene expression. The neurological and non-neurological manifestations of RS vary widely in severity depending on the specific mutation type. Bone complications, mostly scoliosis but also osteoporosis, hip displacement, and a high rate of fractures, are among the most prevalent non-neurological comorbidities observed in girls with RS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!