Differences in the regulation of BDNF and NGF synthesis in cultured neonatal rat astrocytes.

Int J Dev Neurosci

Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000 Ljubljana, Slovenia.

Published: May 2004

Using a new brain-derived neurotrophic factor (BDNF) specific enzyme-immunoassay, we determined the basal cellular content of BDNF protein in neonatal rat astrocytes in primary culture, thus confirming the ability of astrocytes to synthesize BDNF in addition to nerve growth factor (NGF). We subsequently monitored the influence of different pharmacological agents: neurotransmitter receptor agonists, cytokines, and second messenger up-regulators, on the synthesis of BDNF and NGF. Marked differences in the regulation of their synthesis by the above pharmacological agents were observed in our study. The basal cellular levels of BDNF protein in cultured neonatal rat cortical and cerebellar astrocytes were 15.9 +/- 0.3 and 18.7 +/- 0.4 pg BDNF/mg cell protein, respectively, and differ significantly between astrocytes from different brain regions, whereas NGF levels were the same (16.1 +/- 0.3 and 16.2 +/- 0.7 pg NGF/mg cell protein, respectively). Screening different neurotransmitter systems for their influence on BDNF and NGF synthesis in cortical astrocytes revealed that dopamine (0.15 mM) is a potent up-regulator of BDNF protein synthesis in astrocytes, while kainic acid (50 microM) and histamine (1 microM) did not raise the cellular level of BDNF protein. Dopamine had no influence on NGF synthesis, while kainic acid caused minor, and histamine marked, elevation of NGF cellular content. Tumor necrosis factor-alpha (30 ng/ml) and interleukin-1beta (10 U/ml) treatments did not influence BDNF synthesis, whereas they markedly increased NGF protein cellular level. We also confirmed (using forskolin (20 microM) and phorbol 12-myristate 13-acetate (TPA) (100 nM)) that adenylate cyclase and protein kinase C participate in the downstream signaling responsible for the stimulation of BDNF synthesis, whereas in the regulation of NGF synthesis only the participation of protein kinase C was confirmed. Our results indicate that astrocyte-derived neurotrophins could play a role in distinct brain functions under physiological conditions and in the pathogenesis as well as possible treatment of different neurodegenerative disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijdevneu.2004.03.001DOI Listing

Publication Analysis

Top Keywords

ngf synthesis
16
bdnf protein
16
bdnf ngf
12
neonatal rat
12
bdnf
11
ngf
9
synthesis
9
protein
9
differences regulation
8
cultured neonatal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!