The ecological mechanisms that contribute to the acquisition of genetic diversity in an expanding population of the shrub, Myrica cerifera, on an island habitat were investigated. Genealogical reconstruction was used to assess the contribution of early reproductive colonists to subsequent recruitment. In addition, through determination of parentage, the source of recruiting seedlings was identified and the contribution of seed and pollen dispersal into the colonizing sites was inferred. The relative contribution of different sources of gene flow was determined directly and an investigation was made into how variability in breeding patterns may have contributed to observed levels of genetic variability. It was expected that early colonists that could flower would contribute to subsequent recruiting cohorts, and that the limited number of such early reproductive colonists would lead to variance in mating success, inbreeding, or bottlenecks which could reduce genetic diversity and increase genetic differentiation among subsequent recruiting cohorts. Analyses of parentage (with paternity exclusion probability > 95%) for all recruiting plants demonstrated that in fact, there was little contribution by the early reproductive colonists to subsequent cohorts, and that immigration from outside the study sites in the form of seed dispersal accounted for over 94% of the recruitment in the study plots, with pollen dispersal accounting for less than 3% gene flow. No genetic bottleneck or evidence of reproductive skew in the recruiting cohorts were found, suggesting that propagule dispersal was from many source individuals in other established populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-294X.2004.02139.x | DOI Listing |
Genet Med
January 2025
Genomics Ethics, and Translational Research Program, RTI International, Research Triangle Park, NC; Department of Translational and Applied Genomics, Kaiser Permanente Center for Health Research, Portland, OR. Electronic address:
Purpose: Limited evidence evaluates parents' perceptions of their child's clinical genomic sequencing (GS) results, particularly among individuals from medically underserved groups. Five Clinical Sequencing Evidence-Generating Research (CSER) consortium studies performed GS in children with suspected genetic conditions with high proportions of individuals from underserved groups to address this evidence gap.
Methods: Parents completed surveys of perceived understanding, personal utility, and test-related distress after GS result disclosure.
Mol Ecol
January 2025
Institute of Freshwater Research, Department of Aquatic Resources (SLU Aqua), Swedish University of Agricultural Sciences, Drottningholm, Sweden.
How genetic variation contributes to adaptation at different environments is a central focus in evolutionary biology. However, most free-living species still lack a comprehensive understanding of the primary molecular mechanisms of adaptation. Here, we characterised the targets of selection associated with drastically different aquatic environments-humic and clear water-in the common freshwater fish, Eurasian perch (Perca fluviatilis).
View Article and Find Full Text PDFZool Res
January 2025
Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. E-mail:
Animal adaptation to environmental challenges is a complex process involving intricate interactions between the host genotype and gut microbiome composition. The gut microbiome, highly responsive to external environmental factors, plays a crucial role in host adaptability and may facilitate local adaptation within species. Concurrently, the genetic background of host populations influences gut microbiome composition, highlighting the bidirectional relationship between host and microbiome.
View Article and Find Full Text PDFZool Res
January 2025
Institute of Preventive Medicine, School of Public Health, Dali University, Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Yunnan Key Laboratory of Zoonotic Disease Cross-border Prevention and Quarantine, Dali, Yunnan 671000, China. E-mail:
The family has seen an explosive expansion in its host range in recent years, yet the evolutionary trajectory of this zoonotic pathogen remains largely unknown. The emergence of rat hepatitis E virus (HEV) has introduced a new public health threat due to its potential for zoonotic transmission. This study investigated 2 464 wild small mammals spanning four animal orders, eight families, 21 genera, and 37 species in Yunnan Province, China.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Aquatic Ecology, Department Biology, Ludwig-Maximilians - University Munich, München, Germany.
Plankton biodiversity is crucial for the functioning of aquatic ecosystems, influencing nutrient cycling, food web dynamics, and carbon storage. Global change and habitat destruction disrupt these ecosystems, reducing species diversity and ecosystem resilience. Connectivity between aquatic habitats supports biodiversity by enabling species migration, genetic diversity, and recovery from disturbances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!