ABCG2 [also known as BCRP (breast cancer resistance protein) or MXR] is an ABC (ATP-binding cassette) protein shown to confer multidrug resistance. ABCG2 was initially identified in resistant breast carcinoma cells (MCF-7/AdrVp1000) selected with doxorubicin and verapamil. Later studies demonstrated the presence of a point mutation (Arg482 to Thr) in ABCG2 in MCF-7/AdrVp1000 cells. This mutation was shown to modulate the transport of Rh123 (rhodamine 123). In the present study, we have used a previously characterized photoreactive drug analogue of Rh123, IAARh123 (iodoaryl-azido-Rh123), to examine the effects of the Arg482Thr mutation on Rh123 binding and transport by ABCG2. Our results show that both wild-type (ABCG2R482) and mutant (ABCG2T482) ABCG2 bound directly to IAARh123. Surprisingly, however, wild-type ABCG2R482, which does not transport Rh123, was more intensely photolabelled than mutant ABCG2T482. In addition, inhibition of IAARh123 photolabelling using various drug substrates of ABCG2 revealed some differences between wild-type and mutant ABCG2. For example, a molar excess of mitoxantrone was more effective at inhibiting IAARh123 labelling of wild-type than of mutant ABCG2, while excess cisplatin, taxol and methotrexate showed significant inhibition of IAARh123 binding to both wild-type and mutant ABCG2. Taken together, the results of this study provide the first demonstration of the direct binding of drugs to ABCG2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1133829 | PMC |
http://dx.doi.org/10.1042/BJ20040355 | DOI Listing |
Microb Pathog
December 2024
Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu 212001, China. Electronic address:
The autophagy pathway plays a crucial role in resistance to bacterial infection in the host. Salmonella enterica serovar Typhi (S. Typhi), a human restricted pathogen, causes a systemic infection known as typhoid fever.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China. Electronic address:
The robustness and catalytic activity of superoxide dismutase (SOD) are still the main factors limiting their application in industrial fields. This study aims to further improve the properties of a natural thermophilic iron/manganese dual-domain SOD (Fe/Mn-SODA fused with N-terminal polypeptide) from Geobacillus thermodenitrificans NG80-2 (GtSOD) by modifying its each domain using in-depth in silico prediction analysis as well as protein engineering. First, computational analysis of the N-terminal domain and GtSODA domain was respectively performed by using homologous sequence alignment and virtual mutagenesis.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan. Electronic address:
Acyl-acyl carrier protein (acyl-ACP) reductase (AAR) is a crucial enzyme in alka(e)ne production by recombinant Escherichia coli (E. coli). Engineered AAR expressed in E.
View Article and Find Full Text PDFComput Biol Med
December 2024
Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B4-B5 Northern Campus UPC, Barcelona, 08034, Catalonia, Spain. Electronic address:
The guanine exchange factor SOS1 plays a pivotal role in the positive feedback regulation of the KRAS signaling pathway. Recently, the regulation of KRAS-SOS1 interactions and KRAS downstream effector proteins has emerged as a key focus in the development of therapies targeting KRAS-driven cancers. However, the detailed dynamic mechanisms underlying SOS1-catalyzed GDP extraction and the impact of KRAS mutations remain largely unexplored.
View Article and Find Full Text PDFBMC Infect Dis
December 2024
Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.
Background: Bacterial pathogens frequently encounter host-derived metabolites during their colonization and invasion processes, which can serve as nutrients, antimicrobial agents, or signaling molecules for the pathogens. The essential nutrient choline (Cho) is widely known to be utilized by a diverse range of bacteria and may undergo conversion into the disease-associated metabolite trimethylamine (TMA). However, the impact of choline metabolism on bacterial physiology and virulence remains largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!