Arginine482 to threonine mutation in the breast cancer resistance protein ABCG2 inhibits rhodamine 123 transport while increasing binding.

Biochem J

Institute of Parasitology, McGill University, Macdonald Campus, Ste-Anne de Bellevue, Quebec, Canada H9 X3V9.

Published: September 2004

ABCG2 [also known as BCRP (breast cancer resistance protein) or MXR] is an ABC (ATP-binding cassette) protein shown to confer multidrug resistance. ABCG2 was initially identified in resistant breast carcinoma cells (MCF-7/AdrVp1000) selected with doxorubicin and verapamil. Later studies demonstrated the presence of a point mutation (Arg482 to Thr) in ABCG2 in MCF-7/AdrVp1000 cells. This mutation was shown to modulate the transport of Rh123 (rhodamine 123). In the present study, we have used a previously characterized photoreactive drug analogue of Rh123, IAARh123 (iodoaryl-azido-Rh123), to examine the effects of the Arg482Thr mutation on Rh123 binding and transport by ABCG2. Our results show that both wild-type (ABCG2R482) and mutant (ABCG2T482) ABCG2 bound directly to IAARh123. Surprisingly, however, wild-type ABCG2R482, which does not transport Rh123, was more intensely photolabelled than mutant ABCG2T482. In addition, inhibition of IAARh123 photolabelling using various drug substrates of ABCG2 revealed some differences between wild-type and mutant ABCG2. For example, a molar excess of mitoxantrone was more effective at inhibiting IAARh123 labelling of wild-type than of mutant ABCG2, while excess cisplatin, taxol and methotrexate showed significant inhibition of IAARh123 binding to both wild-type and mutant ABCG2. Taken together, the results of this study provide the first demonstration of the direct binding of drugs to ABCG2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1133829PMC
http://dx.doi.org/10.1042/BJ20040355DOI Listing

Publication Analysis

Top Keywords

wild-type mutant
12
mutant abcg2
12
abcg2
11
breast cancer
8
cancer resistance
8
resistance protein
8
rhodamine 123
8
transport rh123
8
wild-type abcg2r482
8
mutant abcg2t482
8

Similar Publications

Vi capsular polysaccharide of Salmonella enterica serovar Typhi disturbs autophagy to increase intracellular survival in macrophages.

Microb Pathog

December 2024

Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu 212001, China. Electronic address:

The autophagy pathway plays a crucial role in resistance to bacterial infection in the host. Salmonella enterica serovar Typhi (S. Typhi), a human restricted pathogen, causes a systemic infection known as typhoid fever.

View Article and Find Full Text PDF

Dual-domain superoxide dismutase: In silico prediction directed combinatorial mutation for enhanced robustness and catalytic efficiency.

Int J Biol Macromol

December 2024

Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China. Electronic address:

The robustness and catalytic activity of superoxide dismutase (SOD) are still the main factors limiting their application in industrial fields. This study aims to further improve the properties of a natural thermophilic iron/manganese dual-domain SOD (Fe/Mn-SODA fused with N-terminal polypeptide) from Geobacillus thermodenitrificans NG80-2 (GtSOD) by modifying its each domain using in-depth in silico prediction analysis as well as protein engineering. First, computational analysis of the N-terminal domain and GtSODA domain was respectively performed by using homologous sequence alignment and virtual mutagenesis.

View Article and Find Full Text PDF

Acyl-acyl carrier protein (acyl-ACP) reductase (AAR) is a crucial enzyme in alka(e)ne production by recombinant Escherichia coli (E. coli). Engineered AAR expressed in E.

View Article and Find Full Text PDF

Unraveling atomic-scale mechanisms of GDP extraction catalyzed by SOS1 in KRAS-G12 and KRAS-D12 oncogenes.

Comput Biol Med

December 2024

Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B4-B5 Northern Campus UPC, Barcelona, 08034, Catalonia, Spain. Electronic address:

The guanine exchange factor SOS1 plays a pivotal role in the positive feedback regulation of the KRAS signaling pathway. Recently, the regulation of KRAS-SOS1 interactions and KRAS downstream effector proteins has emerged as a key focus in the development of therapies targeting KRAS-driven cancers. However, the detailed dynamic mechanisms underlying SOS1-catalyzed GDP extraction and the impact of KRAS mutations remain largely unexplored.

View Article and Find Full Text PDF

Background: Bacterial pathogens frequently encounter host-derived metabolites during their colonization and invasion processes, which can serve as nutrients, antimicrobial agents, or signaling molecules for the pathogens. The essential nutrient choline (Cho) is widely known to be utilized by a diverse range of bacteria and may undergo conversion into the disease-associated metabolite trimethylamine (TMA). However, the impact of choline metabolism on bacterial physiology and virulence remains largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!