Telomerase is a ribonucleoprotein complex mainly composed of a reverse transcriptase catalytic subunit (telomerase reverse transcriptase gene, hTERT) that copies a template region of its RNA subunit to the end of the telomere. For detecting telomerase activity in a tissue specimen the TRAP assay is a relatively sensitive and specific method, but it can be used only on fresh tissue extracts and offers no information at the single cell level. Immunohistochemistry (IHC) allows to detect hTERT protein expression at an individual cell level in human tissues. We have tested commercially available anti-hTERT antibodies in formalin-fixed and paraffin-embedded human tissues by IHC. Only one monoclonal antibody (NCL-hTERT; Novacastra) was sufficiently specific and this was applied to human tissues in which telomerase activity had been shown by TRAP assay and hTERT mRNA expression by RT-PCR. hTERT protein localized diffusely in the nucleoplasm and more intensely in the nucleoli of cancer cells and proliferating normal cells. Mitotic cells showed diffuse staining of the entire cell. Granular cytoplasmic staining was occasionally found in some tumor cells. In telomerase-positive tumors not all the tumor cells showed hTERT immunoreactivity. A significantly heterogeneous hTERT protein expression was observed in human tumor tissues. The hTERT immunostaining in fixed tissues was concordant with telomerase activity and hTERT mRNA expression in corresponding non-fixed samples. Quantitative RT-PCR of microdissected sections showed that hTERT mRNA expression was higher in cells with nuclear expression than in those with cytoplasmic expression. Double staining with the M30 antibody showed that a subpopulation of hTERT-negative cells is apoptotic. We conclude that: (1) hTERT protein can be detected by IHC in fixed human tissues, but the choice of the antibody, tissue processing, and reaction conditions are critical, (2) hTERT protein localizes in the nucleoplasm, more strongly in the nucleolus, and occasionally in the cytoplasm, (3) telomerase-positive tumors show significant heterogeneity of hTERT protein expression, and (4) a subpopulation of hTERT protein negative tumor cells is identified as apoptotic cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00418-004-0645-5 | DOI Listing |
Viruses
December 2024
Department of Biological Sciences and Biotechnology, School of Life Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana.
Cell culture underpins virus isolation and virus neutralisation tests, which are both gold-standard diagnostic methods for foot-and-mouth disease (FMD). Cell culture is also crucial for the propagation of inactivated foot-and-mouth disease virus (FMDV) vaccines. Both primary cells and cell lines are utilised in FMDV isolation and propagation.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Clinical Division of General Anaesthesia and Intensive Care Medicine, Department of Anesthesia, Genera Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria.
Drug development for human disease relies on preclinical model systems such as human cell cultures and animal experiments before therapeutic treatments can ultimately be tested on humans in clinical studies. We here describe the generation of a novel human cell line (HLMVEC/SVTERT289) that we generated by transfection of microvascular endothelial cells from healthy donor lung tissue with the catalytic domain of telomerase and the SV40 large T/small t-antigen. These cells exhibited satisfactory growth characteristics and largely maintained their native characteristics, including morphology, cell surface marker expression, angiogenic potential and the protein composition of secreted extracellular vesicles.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
RAD18 is a conserved eukaryotic E3 ubiquitin ligase that promotes genome stability through multiple pathways. One of these is gap-filling DNA synthesis at active replication forks and in post-replicative DNA. RAD18 also regulates homologous recombination (HR) repair of DNA breaks; however, the current literature describing the contribution of RAD18 to HR in mammalian systems has not reached a consensus.
View Article and Find Full Text PDFSci Rep
January 2025
Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran.
This study investigates the interrelationship between human telomerase reverse transcriptase (hTERT) and ferroptosis in precursor-B (pre-B) acute lymphoblastic leukemia (ALL), specifically examining how hTERT modulation affects ferroptotic cell death pathways. Given that hTERT overexpression characterizes various cancer phenotypes and elevated telomerase activity is observed in early-stage and relapsed ALL, we investigated the molecular mechanisms linking hTERT regulation and ferroptosis in leukemia cells. The experimental design employed Nalm-6 and REH cell lines under three distinct conditions: curcumin treatment, hTERT siRNA knockdown, and their combination.
View Article and Find Full Text PDFCells
January 2025
The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, University of California, 714 Tiverton Ave, Los Angeles, CA 90095, USA.
Doxorubicin is a highly effective anticancer agent, but its clinical use is restricted by severe side effects, including atherosclerosis and cardiomyopathy. These complications are partly attributed to doxorubicin's ability to induce endothelial-to-mesenchymal transition (EndMT) in vascular endothelial cells, a critical process in the initiation and progression of atherosclerosis and cardiomyopathy. GV1001, a multifunctional peptide with anti-inflammatory, anti-cancer, antioxidant, and anti-Alzheimer's properties, has demonstrated inhibition of EndMT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!