Objective: Cytotoxic chemotherapy of advanced breast cancer is frequently complicated by drug resistance. Our goal was to define the role of the apoptosis-regulating receptors Fas (CD95) and CD40 in the chemosensitivity of breast cancer.

Methods: The sensitivity of four breast cancer cell lines to paclitaxel and mitoxantrone was evaluated using an ATP-based cell viability assay. After verification of apoptosis by annexin V staining and TUNEL assay, cell lines were characterized regarding their constitutive expression of both surface and soluble (s)Fas (CD95) and Fas ligand (Fas-L). The role of the Fas/Fas-L system and different caspases was assessed by blocking drug-mediated apoptosis with specific antibodies. Finally, the paclitaxel sensitivity of the CD40-negative cell line KS was compared to that of its CD40-positive transfectant KS-CD40.

Results And Conclusion: While the cytotoxic effect of mitoxantrone did not correlate with Fas expression, the results presented here suggest some involvement of the Fas/Fas-L system in paclitaxel-induced apoptosis. Cell lines with constitutive expression of Fas/sFas demonstrated a higher sensitivity to paclitaxel than Fas-negative cells. Incubation with paclitaxel led to a measurable downregulation of the expression of both soluble and surface Fas receptor in these cells. Interestingly, stimulation of the CD40 receptor inhibited paclitaxel-induced apoptosis in the transfected cell line KS-CD40, suggesting a role of this receptor in the modulation of chemosensitivity.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000077435DOI Listing

Publication Analysis

Top Keywords

cell lines
16
breast cancer
12
cancer cell
8
cd40 receptor
8
constitutive expression
8
fas/fas-l system
8
paclitaxel-induced apoptosis
8
cell
7
paclitaxel
5
expression
5

Similar Publications

In women globally, breast cancer ranks as the second most frequent cause of cancer-related deaths, making up about 25% of female cancer cases, which is pretty standard in affluent countries. Breast cancer is divided into subtypes based on aggressive, genetic and stage. The precise cause of the problem is still unknown.

View Article and Find Full Text PDF

Zoledronic acid (ZA), a bisphosphonate, is commonly used in breast cancer patients with bone metastases to treat hypercalcemia and osteolysis. Recent studies showed the anti-cancer effects of ZA in breast cancer. This study further explored the synergistic effects of sequential and nonsequential ZA and doxorubicin (DOX) administration on estrogen receptor (ER)-positive and -negative breast cancer cell lines.

View Article and Find Full Text PDF

This hospital-based cross-sectional study aimed to screen newborns for sickle cell anemia immediately after birth and validate dried blood spot (DBS) samples against conventional venous blood samples (CBS) for hemoglobin variant analysis by HPLC. Among 751 newborns, 2.93% were found to have sickle cell trait.

View Article and Find Full Text PDF

Purpose Of Review: Multiple myeloma is a chronic malignancy and with evolving treatment options, understanding the economic burden and cost-effectiveness of therapies is crucial for clinicians and researchers.

Recent Findings: In this, we review the recent approval of Bispecific antibodies and CAR-T for myeloma and their cost implications, including direct and indirect costs. We compare this to current regimens and provide cost comparisons in this review.

View Article and Find Full Text PDF

To investigate the role of silent information regulator 6 (SIRT6) in regulating podocyte injury in diabetic nephropathy (DN) through autophagy mediated by Notch signaling pathway. A blank control group (group A), a diabetic nephropathy group (group B), and a Sirt6 intervention group (group C) were established. The group A cells were human normal glomerular podocyte cell lines (HGPCs) without any treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!