Activated Sludge Model No. 1 calibration for piggery wastewater treatment using respirometry.

Water Sci Technol

Cemagref, Livestock and Municipal Waste Management Research Unit, 17 av. de Cucillé, CS 64427, 35044 Rennes Cedex, France.

Published: July 2004

To optimise the intermittent aeration process for piggery wastewater, the Activated Sludge Model No. 1 needs to be calibrated and adapted to this specific effluent. By combining aerobic and anoxic respirometric tests, biodegradation kinetics of organic fractions in piggery wastewater could be studied. Modeling of the respirometric curves proved that the simplified hydrolysis model was sufficient for piggery wastewater treatment simulation. The hydrolysis constant (K(H)) and heterotrophic sludge yield (Y(H)) were determined at temperature and pH in the ranges 10-40 degrees C and 7-9, respectively. The constants were slightly influenced by the temperature but not significantly affected by the pH, with average values of 3 d(-1) for K(H) and 0.60 for Y(H). The anoxic respirometric tests revealed that the experimental ASM1 anoxic correction factor (eta(g)) was higher than one. This could be explained by the fact that the anoxic and the aerobic heterotrophic sludge yields were probably different. By fixing a value of 0.8 for eta(g), the anoxic sludge yield (Y(HD)) could be calculated at 0.53. A modified version of ASM1 for substrate biodegradation in piggery wastewater intermittent aeration process was proposed, including the separation between the anoxic and the aerobic sludge yields and a simplified hydrolysis kinetic.

Download full-text PDF

Source

Publication Analysis

Top Keywords

piggery wastewater
20
activated sludge
8
sludge model
8
wastewater treatment
8
intermittent aeration
8
aeration process
8
anoxic respirometric
8
respirometric tests
8
simplified hydrolysis
8
heterotrophic sludge
8

Similar Publications

Piggery wastewater treatment by solar photo-Fenton coupled with microalgae production.

Water Res

March 2025

LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada do Paço do Lumiar 22, Lisbon 1649-038, Portugal; GreenCoLab, Green Ocean Technologies and Products Collaborative Laboratory, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal.

Pig farming generates highly polluted wastewater that requires effective treatment to minimize environmental damage. Microalgae can recover nutrients from piggery wastewater (PWW), but excessive nutrient and turbidity levels inhibit their growth. Solar photo-Fenton (PF) offer a sustainable and cost-effective pretreatment to allow microalgal growth for further PWW treatment.

View Article and Find Full Text PDF

Bioprocess to produce biostimulants/biofertilizers based on microalgae grown using piggery wastewater as nutrient source.

Bioresour Technol

December 2024

LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal; GreenCoLab, Green Ocean Technologies and Products Collaborative Laboratory, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.

Article Synopsis
  • The study investigated two methods—high-pressure homogenization (HPH) at 100 and 1200 bar, and enzymatic hydrolysis (EH)—to extract biostimulants from Tetradesmus obliquus, a microalga grown in piggery wastewater.
  • The extracts were tested on garden cress, mung beans, and cucumbers to assess their growth-promoting effects, with untreated microalgal cultures showing the best germination rates and cytokinin-like activity.
  • High-pressure homogenization at 1200 bar and enzymatic hydrolysis yielded significant increases in auxin-like activity for mung beans and cucumbers, suggesting that the extracted biomass could be beneficial for sustainable agricultural applications.
View Article and Find Full Text PDF

Synergistic treatment of digested wastewater with high ammonia nitrogen concentration using straw and microalgae.

Bioresour Technol

November 2024

Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.

Microalgae as a promising approach for wastewater treatment, has challenges in directly treating digested piggery wastewater (DPW) with high ammonia nitrogen (NH-N) concentration. To improve the performance of microalgae in DPW treatment, straw was employed as a substrate to form a straw-microalgae biofilm. The results demonstrated that the straw-microalgae biofilm achieved the highest NH-N removal rate of 193.

View Article and Find Full Text PDF

Potentially toxic elements (PTE) pollution in water bodies is an emerging problem in recent decades due to uncontrolled discharges from human activities. Copper, zinc, arsenic, cadmium, lead, mercury, and uranium are considered potentially toxic and carcinogenic elements that threaten human health. Microalgae-based technologies for the wastewater treatment have gained importance in recent years due to their biomass high growth rates and effectiveness.

View Article and Find Full Text PDF

The co-circulation of mosquito-borne Japanese encephalitis virus (JEV), Murray Valley encephalitis virus (MVEV), and West Nile virus (WNV) has impacted human and animal health in multiple countries worldwide. To facilitate early warnings and surveillance of the presence of these viral infectious agents in the environment, a triplex reverse transcription-quantitative PCR (RT-qPCR) was developed for simultaneous quantification of JEV, MVEV, and WNV in potential hotspots such as piggery and urban wastewater and environmental water samples. The performance of the developed triplex RT-qPCR assay was compared with that of simplex counterparts, all using the same primer and probe sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!