Myocardial perfusion measurements by spin-labeling under different vasodynamic states.

J Cardiovasc Magn Reson

Department of Biophysics (EP5), University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany.

Published: September 2004

In this study absolute myocardial perfusion was determined using a spin-labeling magnetic resonance imaging (MRI) technique at 2 Tesla. The technique was applied to 16 healthy volunteers at resting conditions, adenosine-induced stress, and oxygen breathing. Overall myocardial quantitative perfusion was determined as 2.3 +/- 0.8 mL/g/min (rest), 4.2 +/- 1.0 mL/g/min (adenosine), and 1.6 +/- 0.6 mL/g/min (oxygen), respectively. T1 of left ventricular blood pool decreased from 1709 +/- 101 ms (rest) to 1423 +/- 61 ms (oxygen), whereas T1 of right ventricular blood did not change significantly (1586 +/- 126 ms and 1558 +/- 150 ms). In conclusion, the presented technique for quantification of myocardial perfusion is an alternative to contrast agent-based methods. The spin labeling method is noninvasive and easily repeatable and it could therefore become an important tool to study changes in myocardial perfusion under different vasodynamic states.

Download full-text PDF

Source
http://dx.doi.org/10.1081/jcmr-120030571DOI Listing

Publication Analysis

Top Keywords

myocardial perfusion
16
+/- ml/g/min
12
vasodynamic states
8
perfusion determined
8
ventricular blood
8
+/-
7
myocardial
5
perfusion measurements
4
measurements spin-labeling
4
spin-labeling vasodynamic
4

Similar Publications

Heart transplantation remains the ultimate treatment strategy for neonates and children with medically refractory end-stage heart failure and utilization of donors after circulatory death (DCD) can expand th donor pool. We have previously shown that mitochondrial transplantation preserves myocardial function and viability in neonatal swine DCD hearts to levels similar to that observed in donation after brain death (DBD). Herein, we sought to investigate the transcriptomic and proteomic pathways implicated in these phenotypic changes using ex situ perfused swine hearts.

View Article and Find Full Text PDF

Previous studies demonstrated that dexmedetomidine (Dex) posttreatment aggravated myocardial dysfunction and reduced survival in septic mice. Yet, whether Dex elicits similar effects in septic patients as defined by Sepsis-3 remains unknown. This study sought to assess the effects of Dex-based sedation on mortality and cardiac dysfunction in septic patients defined by Sepsis-3 and to further reveal the mechanisms in septic rats.

View Article and Find Full Text PDF

Background: Coronary heart disease the most prevalent form of cardiovascular disease, results from the blockage of blood flow through arteries. The Myocardial Perfusion Scan (MPS) is considered a non-invasive method to assess the heart condition and provides valuable information, such as End Diastolic Volume (EDV), End Systolic Volume (ESV), Ejection Fraction (EF), Lung to Heart Ratio (LHR), and Transient Ischemic Dilatation (TID).

Objective: This study aimed to investigate changes in gated heart scan parameters to diagnose patients, who are candidates for heart surgery.

View Article and Find Full Text PDF

Haemodynamic and hyperaemic effects of adenosine in patients with atrial fibrillation undergoing quantitative myocardial perfusion cardiovascular magnetic resonance.

Eur Heart J Imaging Methods Pract

July 2024

Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester LE3 9QP, UK.

Aims: Patients with atrial fibrillation (AF) are thought to have an attenuated response to adenosine during vasodilator stress testing. We sought to investigate the haemodynamic and hyperaemic effects of adenosine in patients with AF undergoing adenosine-stress cardiovascular magnetic resonance (CMR) assessment.

Methods And Results: We retrospectively examined 318 patients referred for clinical adenosine-stress CMR (AF = 158, sinus rhythm [SR] = 160).

View Article and Find Full Text PDF

Comparative analysis of clinico-metabolic profiles between St Thomas and del Nido cardioplegia solutions: A pilot study.

Perfusion

December 2024

Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research, Lucknow, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.

Introduction: Cardioplegia (CP) is integral to myocardial protection during cardiac surgery. Two standard cardioplegic solutions viz. Del Nido solution (DNS) and St Thomas solution (STS) are widely used in cardiac surgeries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!