Inducing and modulating anisotropic DNA bends by pseudocomplementary peptide nucleic acids.

Proc Natl Acad Sci U S A

Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, 36 Cummington Street, Boston, MA 02215, USA.

Published: May 2004

DNA bending is significant for various DNA functions in the cell. Here, we demonstrate that pseudocomplementary peptide nucleic acids (pcPNAs) represent a class of versatile, sequence-specific DNA-bending agents. The occurrence of anisotropic DNA bends induced by pcPNAs is shown by gel electrophoretic phasing analysis. The magnitude of DNA bending is determined by circular permutation assay and by electron microscopy, with good agreement of calculated mean values between both methods. Binding of a pair of 10-meric pcPNAs to its target DNA sequence results in moderate DNA bending with a mean value of 40-45 degrees, while binding of one self-pc 8-mer PNA to target DNA yields a somewhat larger average value of the induced DNA bend. Both bends are found to be in phase when the pcPNA target sites are separated by distances of half-integer numbers of helical turns of regular duplex DNA, resulting in an enhanced DNA bend with an average value in the range of 80-90 degrees. The occurrence of such a sharp bend within the DNA double helix is confirmed and exploited through efficient formation of 170-bp-long DNA minicircles by means of dimerization of two bent DNA fragments. The pcPNAs offer two main advantages over previously designed classes of nonnatural DNA-bending agents: they have very mild sequence limitations while targeting duplex DNA and they can easily be designed for a chosen target sequence, because their binding obeys the principle of complementarity. We conclude that pcPNAs are promising tools for inducing bends in DNA at virtually any chosen site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC419643PMC
http://dx.doi.org/10.1073/pnas.0308756101DOI Listing

Publication Analysis

Top Keywords

dna
16
dna bending
12
anisotropic dna
8
dna bends
8
pseudocomplementary peptide
8
peptide nucleic
8
nucleic acids
8
dna-bending agents
8
target dna
8
dna bend
8

Similar Publications

Background: The detection rate of oncogenic human papillomaviruses (HPVs) in sinonasal squamous cell carcinomas (SNSCCs) varies among studies. The mutational landscape of SNSCCs remains poorly investigated.

Methods: We investigated the prevalence and prognostic significance of HPV infections based on p16 protein expression, HPV-DNA detection, and E6/E7 mRNA expression using immunohistochemistry, polymerase chain reaction, and in situ hybridization, respectively.

View Article and Find Full Text PDF

The novel allele HLA-DQA1*02:39 differs from HLA-DQA1*02:01:01:01 by one non-synonymous nucleotide substitution in exon 2.

View Article and Find Full Text PDF

Description of the novel HLA-DQA1*05:118 and -DQB1*03:01:01:73 alleles.

View Article and Find Full Text PDF

The novel HLA-DQB1*06:469 allele differs from HLA-DQB1*06:01:01:01 by one nucleotide substitution in codon 187 in exon 3.

View Article and Find Full Text PDF

The novel HLA-DRB1*07:159 allele differs from HLA-DRB1*07:01:01:01 by one non-synonymous nucleotide substitution in exon 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!