Shigella flexneri temperate bacteriophage Sf6 is of interest in part because its prophage expresses the oac gene that alters the antigenic properties of the surface O-antigen polysaccharide of its host bacterium. We have determined the complete sequence of its 39,044 bp genome. The sequence shows that Sf6 is a member of the canonical lambdoid phage group, and like other phages of this type has a highly mosaic genome. It has chromosomal regions that encode proteins >80% identical with at least 15 different previously characterized lambdoid phages and prophages, but 43% of the genome, including the virion assembly genes, is homologous to the genome of one phage, HK620. An analysis of the nucleotide differences between Sf6 and HK620 indicates that even these similar regions are highly mosaic. This mosaicism suggests ways in which the virion structural proteins might interact with each other. The Sf6 early operons are arranged like a typical lambdoid phage, with "boundary sequences" often found between functional modules in the "metabolic" genome domain. By virtue of high degree of similarity in the encoding genes and their DNA target sites, we predict that the integrase, early transcription anti-terminator, CI and Cro repressors, and CII protein of Sf6 have DNA binding specificities very similar to the homologous proteins encoded by phages HK620, lambda, 434 and P22, respectively. The late operon contains two tRNA genes. The Sf6 terminase genes are unusual. Analysis of in vivo initiation of the DNA packaging series showed that the Sf6 apparatus that recognizes DNA for packaging appears to cleave DNA for initiation of packaging series at many sites within a large region of about 1800 bp that includes a possible pac site. This is unlike previously characterized phage packaging mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2004.03.068 | DOI Listing |
Int J Mol Sci
January 2025
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Shosse, 115522 Moscow, Russia.
Previously we discovered that among 15 DNA-binding plant secondary metabolites (PSMs) possessing anticancer activity, 11 compounds cause depletion of the chromatin-bound linker histones H1.2 and/or H1.4.
View Article and Find Full Text PDFClin Chim Acta
January 2025
Centre for Drug Discovery and Development, Amity Institute of Biotechnology, Amity University Maharashtra (AUM), Panvel, Mumbai, India. Electronic address:
Extracellular vesicles (EVs) are nanoscale, membrane-enclosed structures released by cells into the extracellular milieu. These vesicles encapsulate a diverse array of molecular constituents, including nucleic acids, proteins, and lipids, which provide insights into the physiological or pathological conditions of their parent cells. Despite their potential, the study of EV-derived DNA (EV-DNA) has gathered relatively limited attention.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA.
In single cells, variably sized nanoscale chromatin structures are observed, but it is unknown whether these form a cohesive framework that regulates RNA transcription. Here, we demonstrate that the human genome is an emergent, self-assembling, reinforcement learning system. Conformationally defined heterogeneous, nanoscopic packing domains form by the interplay of transcription, nucleosome remodeling, and loop extrusion.
View Article and Find Full Text PDFNature
January 2025
Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
The abundance and sequence of satellite DNA at and around centromeres is evolving rapidly despite the highly conserved and essential process through which the centromere directs chromosome inheritance. The impact of such rapid evolution is unclear. Here we find that sequence-dependent DNA shape dictates packaging of pericentromeric satellites in female meiosis through a conserved DNA-shape-recognizing chromatin architectural protein, high mobility group AT-hook 1 (HMGA1).
View Article and Find Full Text PDFPathogens
December 2024
Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA 92697-3900, USA.
Concatemeric viral DNA is packaged into bacteriophage P22 procapsids via a headful packaging mechanism mediated by a molecular machine consisting of small (gp3) and large (gp2) terminase subunits. Although a negative stain reconstruction exists for the terminase holoenzyme, it is not clear how this complex binds the dodecameric portal protein located at a 5-fold mismatch vertex. Herein, we describe new assemblies for the holoenzyme.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!