Lidoflazine is an antianginal calcium channel blocker that carries a significant risk of QT interval prolongation and ventricular arrhythmia. We investigated whether or not lidoflazine inhibits current through the rapid delayed rectifier K(+) channel alpha subunit (encoded by HERG - human ether-a-go-go-related gene), since this channel has been widely linked to drug-induced QT-prolongation. Lidoflazine inhibited potently HERG current (I(HERG)) recorded from HEK 293 cells stably expressing wild-type HERG (IC(50) of approximately 16 nM). It was approximately 13-fold more potent against HERG than was verapamil under similar conditions. On membrane depolarization, I(HERG) inhibition developed gradually, ruling out closed-channel state dependent inhibition. The effect of command voltage on the drug's action suggested that lidoflazine preferentially inhibits activated/open HERG channels. The S6 mutation Y652A largely eliminated the inhibitory action of lidoflazine, whilst the F656A mutation also reduced blocking potency. We conclude: first, that lidoflazine produces high affinity blockade of the alpha subunit of the HERG channel by binding to aromatic amino acid residues within the channel pore and, second, that this is likely to represent the molecular mechanism of QT interval prolongation by this drug.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yjmcc.2004.02.009 | DOI Listing |
Int J Biol Macromol
January 2025
Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Chamilpa, Cuernavaca, Mor., Mexico. Electronic address:
Glucansucrase Dsr_Wcp3a from a Weissella confusa strain discovered in fermented maize (pozol) was produced in E. coli BL21 resulting in three truncated forms of the native enzyme. An important modification of specificity is observed, as the truncated enzymes synthesize low molecular weight dextran from sucrose, probably due to the absence of domains IV and V, compared to the native enzyme which produces high molecular weight dextran.
View Article and Find Full Text PDFStructure
January 2025
Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA. Electronic address:
High-risk human papillomavirus E6 oncoprotein is a model system for the recognition and degradation of cellular p53 tumor suppressor protein. There remains a gap in the understanding of the ubiquitin transfer reaction, including placement of the E6AP catalytic HECT domain of the ligase concerning the p53 substrate and how E6 itself is protected from ubiquitination. We determined the cryoelectron microscopy (cryo-EM) structure of the E6AP/E6/p53 complex, related the structure to in vivo modeling of the tri-molecular complex, and identified structural interactions associated with activation of the ubiquitin ligase function.
View Article and Find Full Text PDFJ Mycol Med
December 2024
Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:
Introduction: Nakaseomyces glabratus is considered a high priority of attention according to WHO, and also is an important yeast species due to its high rate of intrinsic/acquired resistance against fluconazole. This study aimed at the possible mechanisms of action of thymol, as the promising new antifungal agent, in N. glabratus.
View Article and Find Full Text PDFTalanta
January 2025
Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India. Electronic address:
The cholinergic deficits and amyloid beta (Aβ) aggregation are the mainstream simultaneously observed pathologies during the progression of Alzheimer's disease (AD). Deposited Aβ plaques are considered to be the primary pathological hallmarks of AD and are contemplated as promising diagnostic biomarker. Herein, a series of novel theranostic agents were designed, synthesised and evaluated against cholinesterase (ChEs) enzymes and detection of Aβ species, which are major targets for development of therapeutics for AD.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2025
School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China. Electronic address:
Acetylcholinesterase (AChE) is widely recognized as a promising therapeutic target enzyme for Alzheimer's disease (AD). The screening of AChE inhibitors (AChEIs) holds great significance for the treatment of AD. In this study, cellulose filter paper (CFP) -immobilized AChE was prepared and firstly applied to screening AChEIs from 30 % ethanol extract of Phyllanthus emblica L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!