Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Previously, we described in Streptococcus mutans strain NG8 a 5-gene operon (sat) that includes ffh, the bacterial homologue of the eukaryotic signal recognition particle (SRP) protein, SR54. A mutation in ffh resulted in acid sensitivity but not loss of viability. In the present study, chemostat-grown cells of the ffh mutant were shown to possess only 26% and 39% of the parental membrane F-ATPase activity and 55% and 75% of parental glucose-phosphotransferase (PTS) activity when pH-7 and pH-5-grown cells, respectively, were assayed. Two-dimensional-gel electrophoretic analyses revealed significant differences in protein profiles between parent and ffh-mutant strains at both pH 5 and pH 7. It appears that the loss of active SRP (Ffh) function, while not lethal, results in substantial alterations in cellular physiology that includes acid tolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.femsle.2004.03.043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!