Three different classes of NMDA receptor antagonists were compared for their effectiveness in terminating prolonged status epilepticus (SE), induced by continuous hippocampal stimulation. Animals were treated after 150 min of SE by intraperitoneal administration of increasing doses of 3-((R,S)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), MK-801 (dizocilpine), ifenprodil, or saline. EEG recordings were used to determine seizure termination. The first experiment (n = 57 animals) determined the most effective anticonvulsant dose of each agent by determining its ability to terminate SE within the next 300 min. Five control rats treated with normal saline after 150 min of SE continued to exhibit continuous seizures for the next 300 min. All drugs were administered after 150 min of SE. CPP terminated seizures with an ED(50) of 6.4 mg/kg; the maximal effective dose was 15 mg/kg. MK-801 has an ED(50) of 1.4 mg/kg; the maximal effective dose was 2 mg/kg. Ifenprodil was maximally effective at 30 mg/kg. However, an ED(50) could not be calculated. In a subsequent experiment, the NMDA antagonists were compared for their ability to terminate prolonged SE within 60 min of their administration at the most effective dose. MK-801 (2.0 mg/kg) terminated SE in 6 of 10 animals within 60 min, CPP (15 mg/kg) terminated it in 1 of 9 animals; ifenprodil (30 mg/kg) did not terminate it in any of 9 animals treated. In the 300 min following administration, CPP (6/9) and MK-801 (6/10) were equally efficacious in terminating SE but ifenprodil (2/7) was less effective (P = 0.065, chi-square test). The results indicate that the non-competitive NMDA receptor antagonist MK-801 was superior to the competitive antagonist CPP and the pH-sensitive site antagonist ifenprodil, in terminating prolonged experimental SE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892717PMC
http://dx.doi.org/10.1016/j.eplepsyres.2004.03.004DOI Listing

Publication Analysis

Top Keywords

nmda receptor
12
150 min
12
300 min
12
effective dose
12
receptor antagonists
8
prolonged status
8
status epilepticus
8
antagonists compared
8
terminating prolonged
8
animals treated
8

Similar Publications

Cholesterol metabolites modulate ionotropic P2X4 and P2X7 receptor current in microglia cells.

Neuropharmacology

January 2025

Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy. Electronic address:

The central nervous system is a well-known steroidogenic tissue producing, among others, cholesterol metabolites such as neuroactive steroids, oxysterols and steroid hormones. It is well known that these endogenous molecules affect several receptor classes, including ionotropic GABAergic and NMDA glutamatergic receptors in neurons. It has been shown that also ionotropic purinergic (P2X) receptors are cholesterol metabolites' targets.

View Article and Find Full Text PDF

Anaesthetic management of laparotomy in a patient with anti-NMDA receptor antibody-mediated encephalitis.

BMJ Case Rep

January 2025

Anaesthesiology, St John's National Academy of Health Sciences, Bangalore, Karnataka, India.

Management of cases of anti-N-methyl-D-aspartate (NMDA) antibody-mediated encephalitis is very challenging to anaesthesiologists as this receptor is the target of many anaesthetics. We report a woman diagnosed with anti-NMDA antibody-mediated encephalitis posted for laparotomy. She presented with generalised tonic-clonic seizures.

View Article and Find Full Text PDF

Patient-derived NMDAR mAbs combined with single-particle cryo-electron microscopy reveal multiple GluN1 epitopes and distinct functional effects.

View Article and Find Full Text PDF

Background: Synapses can modify their strength in response to activity, and the unique properties of synapses that regulate their plasticity are essential for memory. Long-term potentiation (LTP) is considered the physiological basis for how neurons encode new memories. A complex series of postsynaptic signaling events in LTP is associated with memory deficits in tauopathy models, but the mechanism by which pathogenic tau inhibits plasticity at synapses is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!