The MS/MS analysis by Electrospray ionization quadrupole-time of flight mass spectrometry (ESI-Q-TOF MS) was applied to identify proteins in proteome analysis of bacteria whose genomes are not known. The protein identification by ESI-Q-TOF MS was performed sequentially by database search and then de novo sequencing using MS/MS spectra. Soil bacteria having unanalyzed genome, Acinetobacter lwoffii K24 is an aniline degrading bacterium. In this report, we present the results of a comparison between the proteome profile of A. lwoffii K24 cultured in aniline- or succinate-containing media. Protein analysis was performed using two-dimensional gel electrophoresis (2-DE) with pH 3-10 immobilized pH gradient (IPG) strips followed by ESI-Q-TOF MS. More than 780 protein spots were detected by 2-DE from the soluble proteome. Forty-eight of these proteins were expressed exclusively in aniline cultured bacteria, and 81 proteins increased and 162 proteins decreased in aniline-cultured versus succinate cultured A. lwoffii K24. Internal amino acid sequences of 43 major protein spots were successfully determined by ESI-Q-TOF MS to try to identify the bacterial proteins responding to aniline culture condition. Since the A. lwoffii K24 genome is not yet sequenced, many proteins were found to be hypothetical. Comparative proteome analysis of the insoluble protein fractions showed that one novel protein that was strongly induced by succinate-cultured A. lwoffii K24 was repressed under aniline culture conditions. These results suggest that comprehensive analysis of bacterial proteomes by 2-DE and amino acid sequence analysis by ESI-Q-TOF MS is useful for understanding induced novel proteins of biodegrading bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2004.02.007DOI Listing

Publication Analysis

Top Keywords

lwoffii k24
24
acinetobacter lwoffii
8
gel electrophoresis
8
electrospray ionization
8
ionization quadrupole-time
8
quadrupole-time flight
8
flight mass
8
mass spectrometry
8
proteome analysis
8
protein spots
8

Similar Publications

Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline.

View Article and Find Full Text PDF

Acinetobacter lwoffii K24 is a known aniline-degrading bacterium. In previous studies, two catechol branches of the beta-ketoadipate pathway were reported to be induced for aniline degradation, and related enzymes (CatA(1) and CatA(2)) were identified from the aniline-induced proteome of A. lwoffii K24 [S.

View Article and Find Full Text PDF

CatABC genes encode proteins that are responsible for the first three steps of one branch of the beta-ketoadipate pathway involved in the degradation of various aromatic compound by bacteria. Aniline-assimilating Acinetobacter lwoffii K24 is known to have the two-catABC gene clusters (cat1 and cat2) on the chromosome (Kim et al., J.

View Article and Find Full Text PDF

The MS/MS analysis by Electrospray ionization quadrupole-time of flight mass spectrometry (ESI-Q-TOF MS) was applied to identify proteins in proteome analysis of bacteria whose genomes are not known. The protein identification by ESI-Q-TOF MS was performed sequentially by database search and then de novo sequencing using MS/MS spectra. Soil bacteria having unanalyzed genome, Acinetobacter lwoffii K24 is an aniline degrading bacterium.

View Article and Find Full Text PDF

Acinetobacter lwoffii K24 known as an aniline degrading bacterium has also been found to utilize p-hydroxybenzoate as a sole carbon source. In this study, 2-DE using Q-Sepharose column separation was attempted for fast screening of protocatechuate 3,4-dioxygenase for catabolism of p-hydroxybenzoate in A. lwoffii K24.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!