A biaxial bubble test has been designed to ascertain the mechanical properties of rat pulmonary arteries. The analytical procedure used to estimate stress and strain from the resulting test data is presented along with some analytical results. The bubble test was performed by loading a flat piece of rat pulmonary artery into a test fixture beneath a circular opening; the material was subsequently pressurized from below, producing a "bubble" of deformed material. Due to the anisotropy of the rat pulmonary artery, the resulting bubble was ellipsoidal in shape. Test results were recorded in the form of side-view images taken from various angles at incremental values of pressure. Average strains were estimated with the use of image analysis to measure changes in the bubble perimeter during inflation. Formulations for isotropic materials were applied to estimate stresses based on the anisotropic geometry of the bubbles produced during testing; some results of this preliminary analysis are presented here. Results from this analysis show differences in mechanical properties of the rat pulmonary artery from those of healthy versus hypertensive rats.

Download full-text PDF

Source

Publication Analysis

Top Keywords

rat pulmonary
20
pulmonary artery
16
bubble test
12
stress strain
8
biaxial bubble
8
mechanical properties
8
properties rat
8
test
6
rat
5
pulmonary
5

Similar Publications

Background: Perinatal nicotine exposure (PNE) induces pulmonary dysplasia in offspring and it increases the risk of respiratory diseases both in offspring and across generations. The maternal gut microbiota and its metabolites, such as short-chain fatty acids (SCFAs), can regulate fetal lung development and are susceptible to nicotine exposure. Therefore, modulation of PNE-induced changes in maternal gut microbiota and SCFAs may prevent the occurrence of pulmonary dysplasia in offspring.

View Article and Find Full Text PDF

Introduction: Trauma and hemorrhagic shock (T/HS) are associated with multiple organ injury. Antithrombin (AT) has anti-inflammatory and organ protective activity through its interaction with endothelial heparan sulfate containing a 3-O-sulfate modification. Our objective was to examine the effects of T/HS on 3-O-sulfated (3-OS) heparan sulfate expression and determine whether AT-heparan sulfate interactions are necessary for its anti-inflammatory properties.

View Article and Find Full Text PDF

Angiotensin receptor-neprilysin inhibitor (ARNI) and angiotensin II receptor blockers (ARB) are antihypertension medications that improve cardiac remodeling and protect the heart. However, at the early stage of hypertension, it is still unclear how these two drugs affect the transcriptomic profile of multiple organs in hypertensive rats and the transcriptomic differences between them. We performed RNA sequencing to define the RNA expressing profiles of the eight tissues (atrium, ventricle, aorta, kidney, brain, lung, white fat, and brown fat) in spontaneously hypertensive rats (SHRs) and SHRs treated with ARNI or ARB.

View Article and Find Full Text PDF

Rat models of postintracerebral hemorrhage pneumonia induced by nasal inoculation with or intratracheal inoculation with LPS.

Front Immunol

January 2025

State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Neurology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.

Background: A stable and reproducible experimental bacterial pneumonia model postintracerebral hemorrhage (ICH) is necessary to help investigating the pathogenesis and novel treatments of Stroke-associated pneumonia (SAP).

Aim: To establish a Gram-negative bacterial pneumonia-complicating ICH rat model and an acute lung injury (ALI)-complicating ICH rat model.

Methods: We established two standardized models of post-ICH pneumonia by nasal inoculation with () or intratracheal inoculation with lipopolysaccharide (LPS).

View Article and Find Full Text PDF

Introduction: In patients with acute respiratory distress syndrome, mechanical ventilation often leads to ventilation-induced lung injury (VILI), which is attributed to unphysiological lung strain (UPLS) in respiratory dynamics. Platelet endothelial cell adhesion molecule-1 (PECAM-1), a transmembrane receptor, senses mechanical signals. The Src/STAT3 pathway plays a crucial role in the mechanotransduction network, concurrently triggering pyroptosis related inflammatory responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!