Nitrogen uptake and turnover in riparian woody vegetation.

Oecologia

Department of Forest Resources, University of Idaho, PO Box 441133, Moscow, ID 83844-1133, USA.

Published: June 2004

The nutrient balance of streams and adjacent riparian ecosystems may be modified by the elimination of anadromous fish runs and perhaps by forest fertilization. To better understand nitrogen (N) dynamics within stream and riparian ecosystems we fertilized two streams and their adjacent riparian corridors in central Idaho. On each stream two nitrogen doses were applied to a swathe approximately 35 m wide centered on the stream. The fertilizer N was enriched in 15N to 18 per thousand. This enrichment is light relative to many previous labeling studies, yet sufficient to yield a traceable signal in riparian and stream biota. This paper reports pre-treatment differences in delta15N and the first-year N response to fertilizer within the riparian woody plant community. Future papers will describe the transfer of allochthonous litter N to the stream and its subsequent processing by stream biota. Pre-treatment delta15N differed between the two creeks (P=0.0002), possibly due to residual salmon nitrogen in one of the creeks. Pre-treatment delta15N of current-year needles was enriched compared to leaf litter, which was in turn enriched compared to needles aged 4 years and older. We conclude that fractionation due to retranslocation occurs in at least two phases. The first phase, which optimizes allocation of N in younger needle age classes, is distinctly different from the second, which conserves N prior to abscission. The delta15N difference between creeks was eliminated by the fertilization (P=0.42). In the two dominant conifer species, Abies lasiocarpa and Picea engelmannii, most fertilizer N was found in the current-year foliage; little was found in older needles and none was detected in litter (P=0.53). The only N-fixing shrub species, Alnus incana, took up only a small amount of fertilizer N [mean percent N derived from fertilizer (%Ndff) 5.0+/-1.6% (SE)]. Far more fertilizer N was taken up by other deciduous shrubs (mean %Ndff=33.9+/-4.5%). Fertilizer N made up 25% (+/-4.2%) of the N in deciduous shrub litter. These results demonstrate the feasibility of light labeling with 15N and the potential influence of riparian plant species composition on stream nutrient dynamics via allochthonous leaf litter inputs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-004-1565-8DOI Listing

Publication Analysis

Top Keywords

riparian woody
8
streams adjacent
8
adjacent riparian
8
riparian ecosystems
8
stream biota
8
pre-treatment delta15n
8
enriched compared
8
leaf litter
8
riparian
7
stream
7

Similar Publications

Macroplastic pollution in riparian corridors of urban and pristine mountain streams in Patagonia (Argentina).

Sci Total Environ

December 2024

Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP; CONICET-UNPSJB), Roca 780, Esquel, Chubut CA 9200, Argentina; Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Chubut CA 9200, Argentina. Electronic address:

Plastic pollution has garnered much more attention in marine environments, while scientific research on freshwater and terrestrial ecosystems has been relatively overlooked. Numerous studies worldwide have highlighted the presence of macroplastics (>2.5 cm) in mountain riverine environments, revealing that even these seemingly pristine ecosystems are not invulnerable to plastic contamination.

View Article and Find Full Text PDF

Rapid warming and high temperatures are an immediate threat to global ecosystems, but the threat may be especially pronounced in the tropics. Although low-latitude tree species are widely predicted to be vulnerable to warming, information about how tropical tree diversity and community composition respond to elevated temperatures remains sparse. Here, we study long-term responses of tree diversity and composition to increased soil and air temperatures at the Boiling River-an exceptional and unique "natural warming experiment" in the central Peruvian Amazon.

View Article and Find Full Text PDF
Article Synopsis
  • Carbon, nitrogen, and phosphorus are crucial for plant growth and ecosystem stability, and understanding the nutrient content in leaves can help identify nutrient limitations in plants.
  • Seasonal water-level changes in riparian zones can harm biodiversity and ecosystem health, making it essential to study the nutrient response of plants in these areas.
  • A study of 44 woody plants in the Dahuofang Reservoir found that their leaves had high nitrogen and phosphorus content, indicating they are nitrogen-limited, while stoichiometric variations among different plant types were minimal.
View Article and Find Full Text PDF

Riparian woody plant communities, including shrubs and trees, are essential for maintaining biodiversity, protecting against floods, reducing erosion, and transporting nutrients. However, these habitats are greatly threatened by human activities, particularly agricultural land acquisition, and the introduction of invasive species. This study examined species diversity and interspecific association in riparian woody plant communities along rivers in the Romanian Carpathians.

View Article and Find Full Text PDF

Land use and climate changes are driving significant shifts in the magnitude and persistence of dryland stream surface flows. The impact of these shifts on ecological functioning is largely unknown, particularly where streams have become wetter rather than drier. This study investigated relationships between hydrologic regime (including surface water persistence, differences in groundwater depth and altered flooding dynamics) with plant traits and riverine vegetation functional composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!