Fluctuating asymmetry (FA) is often used as a measure of underlying developmental instability (DI), motivated by the idea that morphological variance is maladaptive. Whether or not DI has evolutionary potential is a highly disputed topic, marred by methodological problems and fuzzy prejudices. We report here some results from an ongoing study of the effects of karyotype, homozygosity and temperature on wing form and bilateral asymmetry using isochromosomal lines of Drosophila subobscura. Our approach uses the recently developed methodologies in geometric morphometrics to analyse shape configurations of landmarks within the standard statistical framework employed in studies of bilateral asymmetries, and we have extended these methods to partition the individual variation and the variation in asymmetries into genetic and environmental causal components. The analyses revealed temperature-dependent expression of genetic variation for wing size and wing shape, directional asymmetry (DA) of wing size, increased asymmetries at suboptimal temperature, and a transition from FA to DA in males as a result of increase in the rearing temperature. No genetic variation was generally detected for FA in our samples, but these are preliminary results because no crosses between lines were carried out and, therefore, the contribution of dominance was not taken into account. In addition, only a subset of the standing genetic variation was represented in the experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02715812DOI Listing

Publication Analysis

Top Keywords

genetic variation
12
wing form
8
form bilateral
8
bilateral asymmetry
8
asymmetry isochromosomal
8
isochromosomal lines
8
lines drosophila
8
drosophila subobscura
8
wing size
8
wing
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!