Molecular and material properties of major ampullate silk were studied for the cobweb-building black widow spider Latrodectus hesperus. Material properties were measured by stretching the silk to breaking. The strength was 1.0 +/- 0.2 GPa, and the extensibility was 34 +/- 8%. The secondary structure of the major ampullate silk protein was studied using carbon-13 NMR spectroscopy. Alanine undergoes a transition from a coiled structure in pre-spun silk to a beta sheet structure in post-spun silk. We have also isolated two distinct cDNAs (both about 500 bp) which encode proteins similar to major ampullate spidroin 1 and 2 (MaSp1 and MaSp2). The MaSp1-like silk contains polyalanine runs of 5-10 residues as well as GA and GGX motifs. The MaSp2-like silk contains polyalanine runs of varying length as well as GPG(X)(n) motifs. L. hesperus major ampullate silk is more like major ampullate silk from other species than other L. hesperus silks.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm0342640DOI Listing

Publication Analysis

Top Keywords

major ampullate
24
ampullate silk
20
silk
10
properties major
8
black widow
8
widow spider
8
spider latrodectus
8
latrodectus hesperus
8
material properties
8
silk polyalanine
8

Similar Publications

Exploring the Unique Properties and Superior Schwann Cell Guiding Abilities of Spider Egg Sac Silk.

ACS Appl Bio Mater

January 2025

Institute of Physics and Materials Science, Department of Natural Sciences and Sustainable Ressources, BOKU University, Peter Jordan-Straß 82, 1190 Vienna, Austria.

Spider silk (SPSI) is a promising candidate for use as a filler material in nerve guidance conduits (NGCs), facilitating peripheral nerve regeneration by providing a scaffold for Schwann cells (SCs) and axonal growth. However, the specific properties of SPSI that contribute to its regenerative success remain unclear. In this study, the egg sac silk of is investigated, which contains two distinct fiber types: tubuliform (TU) and major ampullate (MA) silk.

View Article and Find Full Text PDF

Spinneret spinning field ontogeny and life history observations in the spider (Araneae: Palpimanidae).

J Arachnol

April 2024

University Instrumentation Center, University of New Hampshire, Parsons Hall W123, 23 Academic Way, Durham, New Hampshire 03824, USA.

As in other Palpimanidae, two pairs of posterior spinnerets present in typical Araneomorphae are vestigial in Kulczyński, 1909, with only the anterior lateral spinneret (ALS) pair prominent. Nevertheless, in late juvenile and adult females, spigots appear in the ancestral posterior spinneret region (PS). Consistent with these spigots serving cylindrical silk glands, females construct substantial egg sacs.

View Article and Find Full Text PDF

Liquid-liquid phase separation (LLPS) of proteins can be considered an intermediate solubility regime between disperse solutions and solid fibers. While LLPS has been described for several pathogenic amyloids, recent evidence suggests that it is similarly relevant for functional amyloids. Here, we review the evidence that links spider silk proteins (spidroins) and LLPS and its role in the spinning process.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on understanding how specific sequence motifs in natural spider silk affect the mechanical properties of artificial spider silk, aiming to create a sustainable alternative to traditional fibers.
  • - Researchers used the Spider Silkome Database to identify motifs that correlate with physical properties and then integrated those motifs into a mini-spidroin to measure changes in tensile strength and other structural features.
  • - Results showed that certain motifs could enhance tensile strength by 9.3%, while others could reduce it by 5.1%, confirming that targeting specific sequences can help tailor the properties of artificial spider silk for various industrial uses.
View Article and Find Full Text PDF

Spiders can produce up to seven different types of silk, each with unique mechanical properties that stem from variations in the repetitive regions of spider silk proteins (spidroins). Artificial spider silk can be made from mini-spidroins in an all-aqueous-based spinning process, but the strongest fibers seldom reach more than 25% of the strength of native silk fibers. With the aim to improve the mechanical properties of silk fibers made from mini-spidroins and to understand the relationship between the protein design and the mechanical properties of the fibers, we designed 16 new spidroins, ranging from 31.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!