Mistargeting of the regulatory subunit of protein phosphatase 2A (PP2A), B56alpha is involved in the hyperphosphorylation and desensitization of the D1 dopamine receptor in renal proximal tubules of spontaneously hypertensive rats (SHRs). However, the renal expression of B56alpha before hypertension develops is not known. Therefore, we studied the expression of B56alpha and PP2A activity in the kidney during development in the SHR and its normotensive control, the Wistar-Kyoto (WKY) rat. PP2A B56alpha was expressed in proximal and distal tubules with no differences in the pattern of expression in WKY and SHRs at any age. In brush border membranes of renal proximal tubules, PP2A B56alpha protein was greatest in the immature rats and decreased with development. However, PP2A activity did not change with age. PP2A B56alpha protein and PP2A activity were similar in WKY and SHRs except at 2 weeks when both PP2A B56alpha protein and PP2A activity were higher in SHRs than in WKY rats. The PP2A catalytic subunit co-immunoprecipitated with the D1 receptor in renal proximal tubule cells. It is possible that the increased expression of PP2A B56alpha and increased basal PP2A activity in the young, especially in the SHRs, may serve as a compensatory mechanism in the increased phosphorylation and decreased renal D1 receptor function, including D1-receptor mediated stimulation in renal proximal tubules of SHRs.

Download full-text PDF

Source
http://dx.doi.org/10.1081/ceh-120030233DOI Listing

Publication Analysis

Top Keywords

pp2a b56alpha
24
pp2a activity
20
renal proximal
16
pp2a
12
proximal tubules
12
b56alpha protein
12
b56alpha
9
protein phosphatase
8
spontaneously hypertensive
8
receptor renal
8

Similar Publications

Oncogenic mutations in KRAS are present in ~95% of patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) and are considered the initiating event of pancreatic intraepithelial neoplasia (PanIN) precursor lesions. While it is well established that KRAS mutations drive the activation of oncogenic kinase cascades during pancreatic oncogenesis, the effects of oncogenic KRAS signaling on regulation of phosphatases during this process is not fully appreciated. Protein Phosphatase 2A (PP2A) has been implicated in suppressing KRAS-driven cellular transformation and low PP2A activity is observed in PDAC cells compared to non-transformed cells, suggesting that suppression of PP2A activity is an important step in the overall development of PDAC.

View Article and Find Full Text PDF

Objective: Radiation-induced lung injury (RILI) is a serious complication of radiotherapy, and the role of IL-17A in this process is not well understood. While IL-17A has been shown to modulate autophagy, conflicting reports exist regarding its activation or inhibition of autophagy. This study investigates the role of IL-17A in RILI and its effects on autophagy via the PP2A-mTOR pathway, with a focus on the PP2A B56α subunit.

View Article and Find Full Text PDF

Background: Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme that controls Ca homeostasis and contractility of the heart via dephosphorylation of regulatory proteins. In some genetically modified mouse models with increased arrhythmogenicity, a reduced expression of the regulatory subunit B56α of PP2A was found as a concomitant effect. Whether there is a general correlation between the abundance of B56α and the promotion of cardiac arrhythmogenesis remains unclear.

View Article and Find Full Text PDF

Oncogenic mutations in KRAS are present in approximately 95% of patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) and are considered the initiating event of pancreatic intraepithelial neoplasia (PanIN) precursor lesions. While it is well established that KRAS mutations drive the activation of oncogenic kinase cascades during pancreatic oncogenesis, the effects of oncogenic KRAS signaling on regulation of phosphatases during this process is not fully appreciated. Protein Phosphatase 2A (PP2A) has been implicated in suppressing KRAS-driven cellular transformation.

View Article and Find Full Text PDF

Biochemical characterization of the Eya and PP2A-B55α interaction.

J Biol Chem

July 2024

Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA. Electronic address:

The eyes absent (Eya) proteins were first identified as co-activators of the six homeobox family of transcription factors and are critical in embryonic development. These proteins are also re-expressed in cancers after development is complete, where they drive tumor progression. We have previously shown that the Eya3 N-terminal domain (NTD) contains Ser/Thr phosphatase activity through an interaction with the protein phosphatase 2A (PP2A)-B55α holoenzyme and that this interaction increases the half-life of Myc through pT58 dephosphorylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!