Background: Allergic asthma is associated with persistent functional and structural changes in the airways and involves many different cell types. Peroxisome proliferator-activated receptor gamma (PPAR-gamma), a member of the nuclear hormone receptor superfamily, is predominantly expressed in adipose tissue and plays a major role in regulating adipocyte differentiation and glucose metabolism. Recently, PPAR-gamma has been shown to play an important role in the control of inflammatory responses, including within the lung, acting on both immune and nonimmune cells.
Objective: Our aim was to assess the anti-inflammatory potential of a PPAR-gamma agonist locally delivered by means of nebulization.
Methods: We used a mouse model of asthma induced by sensitization and airway challenge with ovalbumin. Ciglitazone, a PPAR-gamma agonist, was administered by means of nebulization alone at the time of antigen challenge or by means of gavage and nebulization. Treatments with both ciglitazone and GW9662, a specific antagonist, were also performed to verify that ciglitazone's effects were mediated through PPAR-gamma activation.
Results: Our results show that PPAR-gamma is mainly expressed in airway epithelium on antigen sensitization. Treatment with ciglitazone reduced PPAR-gamma levels in the lung, whereas combined treatment with GW9662 abrogated this inhibition. Importantly, nebulization with ciglitazone decreased airway hyperresponsiveness, basement membrane thickness, mucus production, collagen deposition, and TGF-beta synthesis. A significant correlation was also found between airway hyperresponsiveness, basement membrane thickness, and TGF-beta levels.
Conclusion: These results demonstrate that inhaled agonistic ligands of PPAR-gamma might have new therapeutic potential for airway asthmatic inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jaci.2004.02.036 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!