Breathing carbon dioxide (CO2) is known to induce hypercapnic acidosis and to affect chemoreceptor regulation of the cardiovascular system. However, there is limited information in the literature regarding the effects of breathing CO2 upon tolerance to orthostatic stress where cardiovascular regulation is challenged. The purpose of this study was to investigate the effect of breathing 5% CO2 on presyncopal tolerance to lower body negative pressure (LBNP). Nine subjects (five males and four females; average +/-s.d. age 21.9 +/- 0.9 years, height 172.4 +/- 9.7 cm, mass 70.3 +/- 7.1 kg) volunteered to participate in this study. Orthostatic tolerance was determined by exposing subjects to LBNP until the onset of presyncopal signs and symptoms on two occasions each separated by approximately 1 week. On one occasion investigations were carried out while subjects were breathing room air and on the other while subjects were breathing air containing 5% CO2, inducing hypercapnia and stimulating systemic chemoreceptors. During hypercapnic conditions, as compared with normocapnia, there were significant increases (P < 0.05) in minute ventilation, end-tidal CO2 and estimated arterial P(CO2). Furthermore, under hypercapnic conditions there was an increase in orthostatic tolerance, peak heart rate and time to peak heart rate during LBNP. The LBNP-induced increase in calf circumference was significantly attenuated at -50 mmHg of LBNP in addition to a further 22.3% reduction in stroke volume under hypercapnic conditions. In conclusion, these results suggest that the possible protective element of presyncope was delayed during hypercapnia at the expense of further reductions in stroke volume. This delayed presyncopal response may have been associated with increases in cerebral blood flow (CBF) induced by the increased arterial P(CO2).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1113/expphysiol.2004.027250 | DOI Listing |
J Biol Eng
January 2025
AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, D-52074, Aachen, Germany.
Background: Shake flasks are essential tools in biotechnological development due to their cost efficiency and ease of use. However, a significant challenge is the miniaturization of process analytical tools to maximize information output from each cultivation. This study aimed to develop a respiration activity online measurement system via off-gas analysis, named "Transfer rate Online Measurement" (TOM), for determining the oxygen transfer rate (OTR), carbon dioxide transfer rate (CTR), and the respiration quotient (RQ) in surface-aerated bioreactors, primarily targeting shake flasks.
View Article and Find Full Text PDFAm J Vet Res
January 2025
National Taiwan University Veterinary Hospital, National Taiwan University, Taipei, Taiwan.
Objective: Enhancing ventilatory effort during pulmonary function testing can help reveal flow limitations not evident in normal tidal breathing. This study aimed to assess the efficacy and tolerability of using a CO2/O2 gas mixture to enhance tidal breathing with a barometric whole-body plethysmography system in both healthy cats and those with feline lower airway disease (FLAD).
Methods: This prospective study included healthy cats and those with FLAD, which underwent pulmonary function testing and were exposed to a 10% CO2/90% O2 gas mixture in a barometric whole-body plethysmography chamber, with CO2 concentrations maintained within the target range of 5% to 10%.
J Bacteriol
January 2025
Institute for Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany.
Formic acid is an important source of reductant and energy for many microorganisms. Formate is also produced as a fermentation product, e.g.
View Article and Find Full Text PDFAppl Psychophysiol Biofeedback
January 2025
Department of Psychology, Brigham Young University, Salt Lake City, UT, USA.
Square and 4-7-8 breathing are popularly promoted by psychotherapists but have little empirical support. We hypothesized that breathing at 6 breaths per minute (bpm) would improve HRV, reduce blood pressure, and improve mood more than either square or 4-7-8 breathing. We also hypothesized square and 4-7-8 breathing would increase end-tidal CO (PETCO).
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Ponte Bucci street, cube 15B, 87036 Rende, Italy.
The work aims to estimate natural greenhouse gas emissions from soils in the Sibari Coastal Plain (Southern Italy), to understand (i) the contribution in terms of the total amount of CO and CH emitted in non-volcanic areas, (ii) the relationship among emitted gas, land use, organic matter and tectonic structures, and (iii) their potential environmental implications. Data were elaborated with statistical and geostatistical methods to separate the different populations and obtain prediction and probability maps. Methane fluxes had values consistently below the detection limit (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!