Appreciating the physiology of astrocytes and their role in brain functions requires an understanding of molecules that activate these cells. Estradiol may influence astrocyte functions. We now report that estrogen altered intracellular calcium concentration ([Ca(2+)](i)) in neonatal astrocytes that expressed estrogen receptor (ER) mRNA in vitro. Western blotting revealed both ERalpha and ERbeta proteins in both the nuclear fractions and plasma-membrane fractions. Application of 17beta-estradiol (20 nm) to fura 2-loaded astrocytes in vitro stimulated [Ca(2+)](i) in 75% of astrocytes with an EC(50) of 12.7 +/- 3.1 nm. This rapid action of estradiol was blocked by the ER antagonist, ICI 182,780. The membrane-impermeable estradiol-BSA induced a [Ca(2+)](i) flux that was statistically similar to estradiol. Removal of extracellular Ca(2+) did not alter the effect of estradiol, but phospholipase C inhibitor U73122 (10 microm) and 2-aminoethoxydiphenyl borate (5 microm), an inhibitor of the inositol-1,4,5,-trisphosphate-gated intracellular Ca(2+) channel, significantly decreased the estradiol-induced [Ca(2+)](i) flux. Estradiol was unable to induce [Ca(2+)](i) flux in thapsigargin-depleted cells. These results indicate that estradiol mediates [Ca(2+)](i) flux in astrocytes through a membrane-associated ER that activates the phospholipase C pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2004-0149 | DOI Listing |
Arch Pharm (Weinheim)
January 2025
European Institute for Molecular Imaging (EIMI), University of Muenster, Muenster, Germany.
The P2X4 receptor (P2X4R), a ligand-gated ion channel activated by ATP, plays a critical role in neuroinflammation, chronic pain, and cancer progression, making it a promising therapeutic target. In this study, we explored the design and synthesis of piperazine-based P2X4R antagonists, building on the structural framework of paroxetine. A series of over 35 compounds were synthesized to investigate structure-activity relationships (SARs) in a Ca²⁺-flux assay for P2X4R antagonistic activity.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No. 61 Jiefang Xi Road, Changsha, Hunan, 410219, China.
Pulmonary arterial hypertension (PAH) is a serious medical condition that causes a failure in the right heart. Two-pore channel 2 (TPC2) is upregulated in PAH, but its roles in PAH remain largely unknown. Our investigation aims at the mechanisms by which TPC2 regulates PAH development.
View Article and Find Full Text PDFJ Gen Physiol
March 2025
University Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène - Pathophysiology and Genetics of Neuron and Muscle , Lyon, France.
The potential pathogenic role of disturbed Ca2+ homeostasis in Duchenne muscular dystrophy (DMD) remains a complex, unsettled issue. We used muscle fibers isolated from 3-mo-old DMDmdx rats to further investigate the case. Most DMDmdx fibers exhibited no sign of trophic or morphology distinction as compared with WT fibers and mitochondria and t-tubule membrane networks also showed no stringent discrepancy.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
December 2024
Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, China. Electronic address:
Autophagy is a well-conserved self-protection process that plays an important role in cardiovascular diseases. Excessive autophagy during myocardial ischemia/reperfusion injury (MIRI) induces calcium overload and the overactivation of an autophagic response, thereby aggravating cardiomyocyte damage. Polycystin-2 (PC2) is a Ca-permeable nonselective cation channel implicated in the regulation of autophagy.
View Article and Find Full Text PDFJ Inorg Biochem
December 2024
School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China. Electronic address:
In this study, [Ir(ppy)(DMHBT)](PF) (ppy = deprotonated 1-phenylpyridine, DMHBT = 10,12-dimethylpteridino[6,7-f][1,10]phenanthroline-11,13-(10,12H)-dione, 8a), [Ir(bzq)(DMHBT)](PF) (bzq = deprotonated benzo[h]quinoline, 8b) and [Ir(piq)(DMHBT)](PF) (piq = deprotonated 1-phenylisoquinoline, 8c) were synthesized and characterized by HRMS, C NMR and H NMR. In vitro cytotoxicity experiments showed that 8a, 8b, 8c show moderate cytotoxicity against B16 cells, while the cytotoxicity of the complexes 8a, 8b and 8c toward B16 cells was greatly improved upon light irradiation, which can be used as photosensitizers to exert anticancer efficacy in photodynamic therapy (PDT). After being taken up by cells, 8a, 8b, 8c were localized in the mitochondria, resulting in a large amount of Ca in-flux, a burst release of ROS, a sustained opening of mitochondrial permeability transition pore, and a decrease of the mitochondrial membrane potential, which led to mitochondrial dysfunction and further activation of caspase 3 and Bcl-2 family proteins to induce apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!