A membrane estrogen receptor mediates intracellular calcium release in astrocytes.

Endocrinology

Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095-1763, USA.

Published: August 2004

Appreciating the physiology of astrocytes and their role in brain functions requires an understanding of molecules that activate these cells. Estradiol may influence astrocyte functions. We now report that estrogen altered intracellular calcium concentration ([Ca(2+)](i)) in neonatal astrocytes that expressed estrogen receptor (ER) mRNA in vitro. Western blotting revealed both ERalpha and ERbeta proteins in both the nuclear fractions and plasma-membrane fractions. Application of 17beta-estradiol (20 nm) to fura 2-loaded astrocytes in vitro stimulated [Ca(2+)](i) in 75% of astrocytes with an EC(50) of 12.7 +/- 3.1 nm. This rapid action of estradiol was blocked by the ER antagonist, ICI 182,780. The membrane-impermeable estradiol-BSA induced a [Ca(2+)](i) flux that was statistically similar to estradiol. Removal of extracellular Ca(2+) did not alter the effect of estradiol, but phospholipase C inhibitor U73122 (10 microm) and 2-aminoethoxydiphenyl borate (5 microm), an inhibitor of the inositol-1,4,5,-trisphosphate-gated intracellular Ca(2+) channel, significantly decreased the estradiol-induced [Ca(2+)](i) flux. Estradiol was unable to induce [Ca(2+)](i) flux in thapsigargin-depleted cells. These results indicate that estradiol mediates [Ca(2+)](i) flux in astrocytes through a membrane-associated ER that activates the phospholipase C pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2004-0149DOI Listing

Publication Analysis

Top Keywords

[ca2+]i flux
16
estrogen receptor
8
intracellular calcium
8
astrocytes
6
estradiol
6
[ca2+]i
6
membrane estrogen
4
receptor mediates
4
mediates intracellular
4
calcium release
4

Similar Publications

Piperazine-based P2X4 receptor antagonists.

Arch Pharm (Weinheim)

January 2025

European Institute for Molecular Imaging (EIMI), University of Muenster, Muenster, Germany.

The P2X4 receptor (P2X4R), a ligand-gated ion channel activated by ATP, plays a critical role in neuroinflammation, chronic pain, and cancer progression, making it a promising therapeutic target. In this study, we explored the design and synthesis of piperazine-based P2X4R antagonists, building on the structural framework of paroxetine. A series of over 35 compounds were synthesized to investigate structure-activity relationships (SARs) in a Ca²⁺-flux assay for P2X4R antagonistic activity.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a serious medical condition that causes a failure in the right heart. Two-pore channel 2 (TPC2) is upregulated in PAH, but its roles in PAH remain largely unknown. Our investigation aims at the mechanisms by which TPC2 regulates PAH development.

View Article and Find Full Text PDF

Reduced voltage-activated Ca2+ release flux in muscle fibers from a rat model of Duchenne dystrophy.

J Gen Physiol

March 2025

University Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène - Pathophysiology and Genetics of Neuron and Muscle , Lyon, France.

The potential pathogenic role of disturbed Ca2+ homeostasis in Duchenne muscular dystrophy (DMD) remains a complex, unsettled issue. We used muscle fibers isolated from 3-mo-old DMDmdx rats to further investigate the case. Most DMDmdx fibers exhibited no sign of trophic or morphology distinction as compared with WT fibers and mitochondria and t-tubule membrane networks also showed no stringent discrepancy.

View Article and Find Full Text PDF

Blockage of polycystin-2 alleviates myocardial ischemia/reperfusion injury by inhibiting autophagy through the Ca/Akt/Beclin 1 pathway.

Biochim Biophys Acta Mol Cell Res

December 2024

Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, China. Electronic address:

Autophagy is a well-conserved self-protection process that plays an important role in cardiovascular diseases. Excessive autophagy during myocardial ischemia/reperfusion injury (MIRI) induces calcium overload and the overactivation of an autophagic response, thereby aggravating cardiomyocyte damage. Polycystin-2 (PC2) is a Ca-permeable nonselective cation channel implicated in the regulation of autophagy.

View Article and Find Full Text PDF

In this study, [Ir(ppy)(DMHBT)](PF) (ppy = deprotonated 1-phenylpyridine, DMHBT = 10,12-dimethylpteridino[6,7-f][1,10]phenanthroline-11,13-(10,12H)-dione, 8a), [Ir(bzq)(DMHBT)](PF) (bzq = deprotonated benzo[h]quinoline, 8b) and [Ir(piq)(DMHBT)](PF) (piq = deprotonated 1-phenylisoquinoline, 8c) were synthesized and characterized by HRMS, C NMR and H NMR. In vitro cytotoxicity experiments showed that 8a, 8b, 8c show moderate cytotoxicity against B16 cells, while the cytotoxicity of the complexes 8a, 8b and 8c toward B16 cells was greatly improved upon light irradiation, which can be used as photosensitizers to exert anticancer efficacy in photodynamic therapy (PDT). After being taken up by cells, 8a, 8b, 8c were localized in the mitochondria, resulting in a large amount of Ca in-flux, a burst release of ROS, a sustained opening of mitochondrial permeability transition pore, and a decrease of the mitochondrial membrane potential, which led to mitochondrial dysfunction and further activation of caspase 3 and Bcl-2 family proteins to induce apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!