Intracellular cholesterol transport is essential for the maintenance of cholesterol homeostasis. Many aspects of cholesterol metabolism are well-known, including its synthesis in the endoplasmic reticulum, its extracellular transport in plasma lipoproteins, its uptake by the low-density lipoprotein receptor, and its regulation of SREBP and LXR transcription factors. These fundamental pathways in cholesterol metabolism all rely on its proper intracellular distribution among subcellular organelles and the plasma membrane. Transport involving the ER and endosomes is essential for cholesterol synthesis, uptake, and esterification, whereas cholesterol catabolism by enzymes in mitochondria and ER generates steroids, bile acids, and oxysterols. Cholesterol is a highly hydrophobic lipid that requires specialized transport in the aqueous cytosol, involving either vesicles or nonvesicular mechanisms. The latter includes hydrophobic cavity transporters such as StAR-related lipid transfer (START) proteins. Molecular understanding of intracellular cholesterol trafficking has lagged somewhat behind other aspects of cholesterol metabolism, but recent advances have defined some transport pathways and candidate proteins. In this review, we discuss cholesterol transport among specific intracellular compartments, emphasizing the relevance of these pathways to cholesterol homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.ATV.0000131264.66417.d5 | DOI Listing |
Alzheimers Dement
December 2024
Shenzhen Bay Laboratory, Shenzhen, Guandong, China.
Background: The classic mode of STING activation is through binding the cyclic dinucleotide 2'3'-cyclic GMP-AMP (cGAMP), produced by the DNA sensor cyclic GMP-AMP synthase (cGAS), which is important for the innate immune response to microbial infection and autoimmune disease. Modes of STING activation that are independent of cGAS are much less well understood. We wanted to explore the interactome of STING on the organelles during its trafficking route and to understand the regulatory network of STING signaling.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: While compelling evidence highlights the importance of myeloid cells in the etiology of Alzheimer's Disease (AD), the relevance of immunometabolism still requires further exploration. Our analysis integrating AD genetics and myeloid cell genomics shows that lower levels of LACTB expression in myeloid cells is protective against AD, a finding supported by proteomics studies. As a mitochondrial active-site serine protein, LACTB has implications for mitochondrial morphology and bioenergetics.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Northwestern University, Chicago, IL, USA.
Background: Apolipoprotein E4 (E4) is the strongest genetic risk factor for sporadic Alzheimer's Disease (AD), and aging is the greatest overall risk factor for AD. Many cellular and molecular changes occur within the brain throughout aging, one of which being the increased bone morphogenetic protein 4 (BMP4) signaling. As APOE and BMPs are known to interact in non-neuronal organs, we hypothesized that enhanced BMP signaling in the brain may interact with APOE in a genotype-dependent manner to initiate or exacerbate neuropathological cascades relevant to AD.
View Article and Find Full Text PDFSci Rep
January 2025
MSD R&D Innovation Centre, 120 Moorgate, London, EC2M 6UR, UK.
Dysfunction of the endo-lysosomal intracellular Cholesterol transporter 2 protein (NPC2) leads to the onset of Niemann-Pick Disease Type C (NPC), a lysosomal storage disorder. Metabolic and homeostatic mechanisms are disrupted in lysosomal storage disorders (LSDs) hence we characterized a cellular model of NPC2 knock out, to assess alterations in organellar function and inter-organellar crosstalk between mitochondria and lysosomes. We performed characterization of lipid alterations and confirmed altered lysosomal morphology, but no overt changes in oxidative stress markers.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
December 2024
Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou 350001, Fujian, China; Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China; School of Group Medicine and Public Health, Peking Union Medical College, Beijing 100091, China. Electronic address:
The war between humanity and malignant tumors has been ongoing, with continuous advancements in classic chemotherapy and radiotherapy regimens, targeted drugs, endocrine therapy, and immunotherapy. However, tumor cells can develop primary or secondary resistance to these treatment options, making the issue of tumor resistance a major factor affecting patient prognosis and leading to recurrence. Estrogen-related receptors (ERRs) are members of the nuclear receptor superfamily, primarily involved in regulating glucose, lipid, and amino acid metabolism, serving as a central hub for intracellular energy metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!