Agonists that deplete intracellular Ca2+ stores also activate Ca2+ entry, although the mechanism by which store release and Ca2+ influx are linked is unclear. A potential mechanism involves 'store-operated channels' that respond to depletion of the intracellular Ca2+ pool. Although SOCE (store-operated Ca2+ entry) has been considered to be the principal route for Ca2+ entry during hormonal stimulation of non-electrically excitable cells, recent evidence has suggested that alternative pathways activated by metabolites such as arachidonic acid are responsible for physiological Ca2+ influx. It is not clear whether such messenger-activated pathways exist in all cells, whether they are truly distinct from SOCE and which metabolites are involved. In the present study, we demonstrate that HeLa cells express two pharmacologically and mechanistically distinct Ca2+ entry pathways. One is the ubiquitous SOCE route and the other is an arachidonate-sensitive non-SOCE. We show that both these Ca2+ entry pathways can provide long-lasting Ca2+ elevations, but that the channels are not the same, based on their differential sensitivity to 2-aminoethoxydiphenyl borate, LOE-908 [(R,S)-(3,4-dihydro-6,7-dimethoxy-isochinolin-1-yl)-2-phenyl-N,N-di[2-(2,3,4-trimethoxyphenyl)ethyl]acetamid mesylate] and gadolinium. In addition, non-SOCE and not SOCE was permeable to strontium. Furthermore, unlike SOCE, the non-SOCE pathway did not require store depletion and was not sensitive to displacement of the endoplasmic reticulum from the plasma membrane using jasplakinolide or ionomycin pretreatment. These pathways did not conduct Ca2+ simultaneously due to the dominant effect of arachidonate, which rapidly curtails SOCE and promotes Ca2+ influx via non-SOCE. Although non-SOCE could be activated by exogenous application of arachidonate, the most robust method for stimulation of this pathway was application of the widely used calmodulin antagonist calmidazolium, due to its ability to activate phospholipase A2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1133905PMC
http://dx.doi.org/10.1042/BJ20040097DOI Listing

Publication Analysis

Top Keywords

ca2+ entry
20
ca2+
12
ca2+ influx
12
hela cells
8
intracellular ca2+
8
entry pathways
8
entry
6
soce
6
pathways
5
non-soce
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!