Vesicles with biological activity or with a targeting function in addition to carrier properties will have an added advantage. Vesicles prepared with amphiphiles having antioxidant property may have potential applications towards disorders implicated with reactive oxygen species. Ascorbyl palmitate (ASP) was explored as bilayer vesicle forming material. It formed vesicles (Aspasomes) in combination with cholesterol and a negatively charged lipid (dicetyl phosphate). Aspasomes were prepared by film hydration method followed by sonication in which aqueous azidothymidine (AZT) solution was encapsulated in aqueous regions of bilayer. Aspasomes were obtained with all compositions containing 18-72 mol% cholesterol. Differential scanning calorimetric data of aspasome dispersion and anhydrous mixtures of ascorbyl palmitate, cholesterol and dicetyl phosphate confirm the formation of bilayered vesicles with ascorbyl palmitate. Cholesterol content in aspasome did not exhibit any relation with vesicle size, zeta potential or percent entrapment. A substantial change in release rate of azidothymidine from aspasome was noticed on varying the proportion of cholesterol. Release rate and cholesterol content in Aspasomes did not exhibit any relation. A preparation with 45 mol% of cholesterol showed maximum retardation in release rate, than other compositions. The change in capture volume with time (latency) was studied for 8 h and with such a short duration study it was difficult to predict long term stability of these vesicles. But release experiments do indicate stability up to 18 h. Percent reducing activity of aspasome was estimated by measuring the absorbance of alpha,alpha-diphenyl-beta-picrylhydrazyl (DPPH) at 517 nm after addition of test antioxidant samples. These studies revealed that the antioxidant potency of ascorbyl moiety is retained even after converting ascorbyl palmitate into vesicles (Aspasomes). The antioxidant potency of Aspasomes was assessed by measuring the protection offered by this preparation against quinolinic acid induced lipoperoxidation of whole human blood in vitro, where in the lipoperoxidation was monitored by measuring thiobarbituric acid reactive substances (TBARS) levels. Aspasome rendered much better antioxidant activity than ascorbic acid. Transdermal permeation of aspasomal AZT, ASP-AZT aqueous dispersion and AZT-solution across excised rat skin was investigated in vitro using Franz diffusion cell. Permeation of aspasomal AZT was much higher than the other two preparations. However, ASP-AZT aqueous dispersion has also enhanced permeation of AZT significantly over the AZT-solution, indicating skin permeation enhancing property of ascorbyl palmitate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2003.10.032 | DOI Listing |
Food Res Int
January 2025
State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China. Electronic address:
Essential fatty acids (EFAs) in edible oils are crucial for human nutrition. However, their high unsaturation renders edible oils susceptible to oxidation during storage and processing. The addition of lipophilic antioxidants is an effective strategy to inhibit oxidation and safeguard the nutritional integrity of edible oils.
View Article and Find Full Text PDFTrans R Soc Trop Med Hyg
January 2025
Conse jo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), CP3400 Corrientes, Argentina.
Background: The WHO states that antivenom is the only safe and effective treatment to neutralize snake venom. Snakebite antivenom typically involves horse hyperimmunization with crude venom and Freund's adjuvant.
Methods: In the current work, we analyzed the ascorbyl palmitate liquid crystal structure with snake protein or PLA2, the carrier charge capacity, and we evaluated the immune response induced by the enzyme P9a(Cdt-PLA2) formulated in a nanostructure using CpG-ODN, determining the titer of IgG antibodies.
Polymers (Basel)
November 2024
Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
The development of biodegradable active packaging is a relevant topic demanding the development of film properties, biodegradability, and the potential to preserve food quality. This study aimed to develop thermoplastic starch (TPS) blended with polybutylene adipate-co-terephthalate (PBAT) films via blown-film extrusion containing ascorbyl palmitate (AP) and sodium ascorbyl phosphate (SAP) as antioxidants. The morphology, mechanism, and barrier and antioxidant properties of the films were analyzed to determine the presence of AP, SAP, and their interaction effect on the film properties.
View Article and Find Full Text PDFFood Sci Biotechnol
December 2024
Department of Food Science and Biotechnology, Sungkyunkwan University, 300 Cheonchoen-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746 Republic of Korea.
The purpose of this work was to re-evaluate the polar paradox theory (PPT) that explains the relationships between the efficacy of antioxidants, their polarity, and their environments. In this study, ascorbic acid (AA), ascorbyl palmitate (AP), gallic acid (GA), gallyl palmitate (GP), Trolox (TR), -tocopherol (TO), resveratrol (R), and resveratryl palmitate (RP) were employed to assess conjugated dienoic acid (CDA), the -anisidine value (-AV), headspace oxygen content, and hexanal formation in a bulk oil system. TR, TO, R, and RP showed better antioxidant activities in CDA and -AV and higher headspace oxygen content than AA, AP, GA, and GP.
View Article and Find Full Text PDFCommun Mater
September 2024
Department of Chemistry, The University of Western Ontario, London, ON Canada.
Nanofiber-based hydrogel delivery systems have recently shown great potential in biomedical applications, specifically due to their high surface-to-volume ratio of ultra-fine nanofibers and their ability to carry low solubility drugs. Herein, we introduce a visible light-triggered in situ-gelling drug vehicle (GAP Gel) composed of ascorbyl palmitate (AP) nanofibers and gelatin methacryloyl polymer. AP nanofibers form self-assembled structures through intermolecular interactions with a hydrophobic drug-loading core.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!