Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Deep brain stimulation (DBS) is an effective treatment for movement disorders, but the mechanisms are unclear. DBS generates inhibition of neurons surrounding the electrode while simultaneously activating the output axons of local neurons. This dual effect does not explain two hallmarks of DBS effectiveness: symptom relief is dependent on using a sufficiently high-stimulation frequency, and clinical effects are analogous to those produced by lesion. The effect of DBS at different frequencies on the output of intrinsically active neurons was studied using computational models. DBS produced frequency-dependent modulation of the variability of neuronal output, and above a critical frequency stimulation resulted in regular output with zero variance. The resulting loss of information offers an explanation for the two hallmarks of DBS effectiveness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00001756-200405190-00011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!