In the human population, five major HLA-DRB haplotypes have been identified, whereas the situation in rhesus macaques (Macaca mulatta) is radically different. At least 30 Mamu-DRB region configurations, displaying polymorphism with regard to number and combination of DRB loci present per haplotype, have been characterized. Until now, Mamu-DRB region genes have been studied mainly by genomic sequencing of polymorphic exon 2 segments. However, relatively little is known about the expression status of these genes. To understand which exon 2 segments may represent functional genes, full-length cDNA analyses of -DRA and -DRB were initiated. In the course of the study, 11 cDRA alleles were identified, representing four distinct gene products. Amino acid replacements are confined to the leader peptide and cytoplasmatic tail, whereas residues of the alpha1 domain involved in peptide binding, are conserved between humans, chimpanzees, and rhesus macaques. Furthermore, from the 11 Mamu-DRB region configurations present in this panel, 28 cDRB alleles were isolated, constituting 12 distinct cDRA/cDRB configurations. Evidence is presented that a single configuration expresses maximally up to three -DRB genes. For some exon 2 DRB sequences, the corresponding transcripts could not be detected, rendering such alleles as probable pseudogenes. The full-length cDRA and cDRB sequences are necessary to construct Mhc class II tetramers, as well as transfectant cell lines. As the rhesus macaque is an important animal model in AIDS vaccine studies, the information provided in this communication is essential to define restriction elements and to monitor immune responses in SIV/simian human immunodeficiency virus-infected rhesus macaques.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.172.10.6152DOI Listing

Publication Analysis

Top Keywords

rhesus macaques
16
mamu-drb region
12
region configurations
8
exon segments
8
rhesus
5
genetic makeup
4
region
4
makeup region
4
region rhesus
4
macaques
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!