The cell adhesion molecule L1 has been implicated in a variety of motile processes, including neurite extension, cerebellar cell migration, extravasation, and metastasis. Homophilic or heterophilic L1 binding and concomitant signaling have been shown to promote cell motility in the short term. In this report, L1 is also shown to induce and maintain a motile and invasive phenotype by promoting gene transcription. In the presence of serum or platelet-derived growth factor, L1 promotes heightened and sustained activation of the extracellular signal-regulated kinase pathway. Activation of this pathway then induces the expression of motility- and invasion-associated gene products, including the beta(3)-integrin subunit, small GTPases, and the cysteine proteases cathepsin-L and -B. Induction of integrin alpha(v)beta(3) and rac-1 is shown to contribute directly to L1-dependent haptotaxis, whereas induction of cathepsins-L and -B promotes matrix invasion. This study provides a novel translational mechanism to account for the association between L1 expression and motile processes involved in metastasis and development.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M404075200DOI Listing

Publication Analysis

Top Keywords

extracellular signal-regulated
8
signal-regulated kinase
8
cell adhesion
8
motile processes
8
kinase erk-dependent
4
erk-dependent gene
4
gene expression
4
expression contributes
4
cell
4
contributes cell
4

Similar Publications

Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a high mortality rate and exhibits a limited response to apoptosis-dependent chemotherapeutic drugs (e.g., gemcitabine, Gem).

View Article and Find Full Text PDF

Objective: This study aims to investigate may moesin deficiency resulted in neurodevelopmental abnormalities caused by negative impact on synaptic signaling ultimately leading to synaptic structure and plasticity.

Methods: Behavioral assessments measured neurodevelopment (surface righting, negative geotaxis, cliff avoidance), anxiety (open field test, elevated plus maze test), and memory (passive avoidance test, Y-maze test) in moesin-knockout mice (KO) compared to wild-type mice (WT). Whole exome sequencing (WES) of brain (KO vs.

View Article and Find Full Text PDF

SERCA2 dysfunction accelerates angiotensin II-induced aortic aneurysm and atherosclerosis by induction of oxidative stress in aortic smooth muscle cells.

J Mol Cell Cardiol

January 2025

School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, China; Chongqing Key Laboratory of New Drug Delivery System, Chongqing 400038, China. Electronic address:

Background And Aim: Our previous research indicates that sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) dysfunction facilitates the phenotypic transformation of aortic smooth muscle cells (ASMCs) and intensifies aortic aneurysm through the regulation of calcium-dependent pathways and endoplasmic reticulum stress. Our hypothesis is that additional mechanisms are involved in aortic aneurysm and atherosclerosis induced by SERCA2 dysfunction from the perspective of ASMC phenotypic transformation.

Methods & Results: In SERCA2 dysfunctional mice and their control littermates, ASMCs were isolated to analyze protein expression and cell functions, and angiotensin II was infused into these mice that were backcrossed into LDL receptor deficient background to induce aortic aneurysm and atherosclerosis.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the role of transmembrane emp24 domain-containing protein 2 (TMED2) in oral squamous cell carcinoma (OSCC).

Methodology: A bioinformatics analysis was first conducted to explore TMED2 expression in OSCC and its relation with overall survival. The analysis results were further verified by assessing TMED2 expression levels in human normal oral keratinocyte cells and human OSCC cell lines using quantitative real-time polymerase chain reaction and the Western blot.

View Article and Find Full Text PDF

Microtubule associated protein 2 (MAP2) interacts with the regulatory protein 14-3-3ζ in a cAMP-dependent protein kinase (PKA) phosphorylation dependent manner. Using selective phosphorylation, calorimetry, nuclear magnetic resonance, chemical crosslinking, and X-ray crystallography, we characterized interactions of 14-3-3ζ with various binding regions of MAP2c. Although PKA phosphorylation increases the affinity of MAP2c for 14-3-3ζ in the proline rich region and C-terminal domain, unphosphorylated MAP2c also binds the dimeric 14-3-3ζ via its microtubule binding domain and variable central domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!