Fragrance substances represent a very diverse group of chemicals; a proportion of them are associated with the ability to cause allergic reactions in the skin. Efforts to find substitute materials are hindered by the need to undertake animal testing for determining both skin sensitization hazard and potency. One strategy to avoid such testing is through an understanding of the relationships between chemical structure and skin sensitization, so-called structure-activity relationships. In recent work, we evaluated 2 groups of fragrance chemicals -- saturated aldehydes and alpha,beta-unsaturated aldehydes. Simple quantitative structure-activity relationship (QSAR) models relating the EC3 values [derived from the local lymph node assay (LLNA)] to physicochemical properties were developed for both sets of aldehydes. In the current study, we evaluated an additional group of carbonyl-containing compounds to test the predictive power of the developed QSARs and to extend their scope. The QSAR models were used to predict EC3 values of 10 newly selected compounds. Local lymph node assay data generated for these compounds demonstrated that the original QSARs were fairly accurate, but still required improvement. Development of these QSAR models has provided us with a better understanding of the potential mechanisms of action for aldehydes, and hence how to avoid or limit allergy. Knowledge generated from this work is being incorporated into new/improved rules for sensitization in the expert toxicity prediction system, deductive estimation of risk from existing knowledge (DEREK).

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.0105-1873.2004.00322.xDOI Listing

Publication Analysis

Top Keywords

skin sensitization
12
qsar models
12
ec3 values
8
local lymph
8
lymph node
8
node assay
8
evaluation quantitative
4
quantitative structure--activity
4
structure--activity relationship
4
models
4

Similar Publications

While progress has been made in recent years, there are still no suitable and accepted , or models that can be used to accurately predict whether a chemical substance has the intrinsic property to cause immune-mediated chemical respiratory allergy, typically manifested as allergic asthma or allergic rhinitis which represents a severe health hazard. Regulatory authorities have relied primarily on clinical evidence (case reports, clinical databases, worker exposure studies) to classify substances as respiratory sensitizers, but this evidence can lack a proven immunological mechanism which is necessary to identify substances which can cause life-long sensitization and clinically relevant allergic symptoms in the respiratory tract in an exposed population (such respiratory allergens may be considered as "true" sensitizers, in analogy to the definition of skin sensitization, and in contrast to respiratory irritants). In light of this, the European Center for Ecotoxicology and Toxicology of Chemicals convened a Task Force to evaluate the types of clinical methods and data sources and the implications of relying on such data for regulatory decision making from a scientific perspective.

View Article and Find Full Text PDF

(E)-1,1,1,2,2,5,5,6,6,6-Decafluoro-3-hexene (HFO-153-10mczz-E).

Toxicol Ind Health

January 2025

Cincinnati, OH, USA.

(E)-1,1,1,2,2,5,5,6,6,6-Decafluoro-3-hexene (HFO-153-10mczz-E) (CASRN 1256353-26-0) is a volatile liquid proposed for use as a new low global-warming potential dielectric fluid in cooling applications. Workplace exposures are expected to be by inhalation exposure. The substance has low acute inhalation toxicity as indicated by a 4-h inhalation LC value of approximately 8000 ppm.

View Article and Find Full Text PDF

A Retrospective Comparison of Aeroallergen Sensitization Among Different Allergic Diseases in Guangzhou, China.

Mediators Inflamm

January 2025

Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.

Numerous studies have reported on the types of aeroallergen sensitization in various pediatric allergic diseases, but limited data compared the types of aeroallergen sensitization across different pediatric allergic diseases. The aim of this study is to explore the nature and significance of aeroallergen sensitization in diverse pediatric allergic conditions. A comparative analysis was carried out on aeroallergen sensitization in children suffering from allergic diseases who visited the Otolaryngology, Respiratory, and Dermatology Departments between January 2019 and December 2023.

View Article and Find Full Text PDF

Psoriasis is a chronic, systemic immune-mediated skin disease. Although many new strategies for psoriasis treatment have been developed, there is great need in clinic for treating psoriasis. Gentiopicroside (GPS), derived from Gentiana manshurica Kitagawa, has multiple pharmacological activities including anti-inflammatory, anti-oxidative and antiviral activities.

View Article and Find Full Text PDF

The human Cell Line Activation Test (h-CLAT) is an in vitro skin sensitization assay adopted by the OECD as Test Guideline 442E. In the h-CLAT, 2,4-dinitrochlorobenzene (DNCB) is used as a positive control; however, DNCB is considered a poisonous substance under the Poisonous and Deleterious Substances Control Act in Japan since 2014 because of its high acute toxicity. Strict control, handling, and storage are required when using DNCB, which is a burden to the users.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!