Colorimetric azobenzene based chemosensors 1 and 2 were designed for detection of transition-metal ions such as Cu(II) under physiological pH conditions. The internal charge transfer (ICT) sensors are highly colored, absorbing in the green. For 1, the Cu(II) recognition gives rise to red-to-yellow color changes that are visible to the naked-eye and reversible upon addition of EDTA, whereas for 2, which lacks the aromatic o-methoxy chelating group, no such changes were observed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol0498951DOI Listing

Publication Analysis

Top Keywords

highly selective
4
selective colorimetric
4
colorimetric naked-eye
4
naked-eye cuii
4
cuii detection
4
detection azobenzene
4
azobenzene chemosensor
4
chemosensor colorimetric
4
colorimetric azobenzene
4
azobenzene based
4

Similar Publications

Two-dimensional cell membrane chromatography guided screening of myocardial protective compounds from Yindan Xinnaotong soft capsule.

Chin Med

January 2025

State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China.

Background: Cell membrane chromatography (CMC) is a biochromatography with a dual function of recognition and separation, offering a distinct advantage in screening bioactive compounds from Chinese medicines (CMs). Yindan Xinnaotong soft capsule (YD), a CM formulation, has been widely utilized in the treatment of cardiovascular disease. However, a comprehensive mapping of the myocardial protective active compounds remains elusive.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) in combination with antiangiogenic drugs have shown promising outcomes in the third-line and subsequent treatments of patients with microsatellite stable metastatic colorectal cancer (MSS-mCRC). Radiotherapy (RT) may enhance the antitumor effect of immunotherapy. However, the effect of RT exposure on patients receiving ICIs and targeted therapy remains unclear.

View Article and Find Full Text PDF

Exploring the potential of machine learning models to predict nasal measurements through facial landmarks.

J Prosthet Dent

January 2025

Professor and Chairman, Department of Prosthodontics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States. Electronic address:

Statement Of Problem: Information on predicting the measurements of the nose from selected facial landmarks to assist in maxillofacial prosthodontics is lacking.

Purpose: The objective of this study was to identify the efficiency of machine learning models in predicting the length and width of the nose from selected facial landmarks.

Material And Methods: Two-dimensional frontal and lateral photographs were made of 100 men and 100 women.

View Article and Find Full Text PDF

Application of lanthanum-modified silk fibroin/polyvinyl alcohol film for highly selective defluoridation in brick tea infusion.

Int J Biol Macromol

January 2025

State Key Laboratory of Tea Plant Biology and Utilization, Joint Research Center for Food Nutrition and Health of IHM and Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Anhui Agricultural University, Hefei 230036, PR China; College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, PR China. Electronic address:

To mitigate the risk associated with water-soluble fluoride in tea and to have less influence on the contents of tea infusion, a highly selective lanthanum modified silk fibroin (SF) and polyvinyl alcohol (PVA) composite film (SF/PVA-La) was prepared to remove fluoride from brick tea infusion. Notably, SF/PVA-La could remove about 48 % of the fluoride from in brick tea infusion within 30 min. Importantly, the reduction in total tea polyphenols in brick tea did not exceed 10 %, and the reduction in caffeine was only 0.

View Article and Find Full Text PDF

Mesoporous carbon nanospheres-assisted amplified electrochemiluminescence for L-cysteine detection.

Anal Biochem

January 2025

Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China. Electronic address:

Luminol-loaded mesoporous carbon nanospheres (MCs@LU) were utilized to develop a highly sensitive electrochemiluminescence (ECL) sensor for the detection of L-cysteine (L-Cys). L-Cys acted as the coreactant of luminol, and the pore confinement effect of mesoporous carbons (MCs) resulted in a robust ECL signal. Upon optimization, a linear correlation between the ECL intensity and L-Cys concentration was observed over the range of 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!