Biochemical, physiological and ultrastructural changes of the chloroplasts were examined in the course of the rapid yellowing process of spruce (Picea abies (L.) Karst.) at a Mg-deficient and ozone polluted mountain site (Schöllkopf mountain, Central Black Forest, Germany, 840 m a.s.l.). While at an early stage of yellowing the chlorophyll (Chl) content of the needles decreased slowly, significant changes occurred in the chloroplasts: The lability of the light-harvesting Chl a/b protein complex LHC II increased; the thylakoid cross-sectional area of chloroplasts in the outer mesophyll of the needles decreased, and their Chl fluorescence showed typical changes like the decrease of Fv/Fm and the increase of the photoinhibitory Fv quenching. Later on, the Chl content decreased rapidly, the changes in the chloroplasts continued and the needles turned yellow. Lutein and the pigments of the xanthophyll cycle were enhanced in relation to Chl a. Light and dark reactions of the xanthophyll cycle were highly active indicating efficient proton pumping and NADPH formation. The ratio of nonappressed to appressed thylakoid membranes increased with decreasing Fv/Fm suggesting that structural and fluorescence properties of the chloroplasts were related. The response of the needles to defined shading and improved Mg supply was also examined. The combined effects of strong sun light, low levels of non-Chl-bound Mg (Mg(free)) and ozone concentrations exceeding 80 microg m(-3) are shown to be necessary to induce the rapid yellowing process. For needles with Mg(free) < 0.12 mg g(-1) needle dry matter, the lability of the LHC II was correlated with the ozone concentration suggesting that the destabilization of the LHC II plays a central role in the rapid yellowing process.

Download full-text PDF

Source
http://dx.doi.org/10.1078/0176-1617-01095DOI Listing

Publication Analysis

Top Keywords

rapid yellowing
16
yellowing process
12
mountain site
8
central black
8
black forest
8
forest germany
8
combined effects
8
biochemical physiological
8
properties chloroplasts
8
changes chloroplasts
8

Similar Publications

Identifying Allosteric Small-Molecule Binding Sites of Inactive NS2B-NS3 Proteases of Pathogenic .

Viruses

December 2024

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093-0657, USA.

Dengue, West Nile, Zika, Yellow fever, and Japanese encephalitis viruses persist as significant global health threats. The development of new therapeutic strategies based on inhibiting essential viral enzymes or viral-host protein interactions is problematic due to the fast mutation rate and rapid emergence of drug resistance. This study focuses on the NS2B-NS3 protease as a promising target for antiviral drug development.

View Article and Find Full Text PDF

This article reports on the long-term use, solid bismuth microelectrode arrays for the first time. The presented working microelectrode is characterized by particular advantages compared to bismuth film electrodes and solid single bismuth microelectrodes; these advantages include environmentally friendly properties and the amplification of recorded currents, which are subsequently more resistant to interference. The proposed solid bismuth microelectrode array was applied to develop an adsorptive stripping voltammetric procedure for Sunset Yellow determination.

View Article and Find Full Text PDF

Populations of the Invasive Mussel in China Showed Lower Genetic Diversity in Autumn than in Spring.

Biology (Basel)

December 2024

Laboratory of Marine Organism Taxonomy & Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Native to tropical America, the charru mussel, , has been spreading rapidly in the West Pacific Ocean, including the South China Sea. In order to study the adaptive evolution of and examine the present status of invasion in China, the mitochondrial gene fragment was employed to analyze the genetic variations of seven populations sampled in both spring and autumn 2023. Results showed that all the populations had high haplotype diversity (>0.

View Article and Find Full Text PDF

Copper-based halides have attracted significant attention due to their unique photophysical properties and diverse coordination configurations. However, enhancing water stability and modulating structural transitions in cuprous halide materials remain challenging. In this work, we successfully synthesized three copper(I) halides, (CHP)CuBr (L1, [CHP] = hexyltriphenylphosphonium), (CHP)CuBr (L2), and (CHP)CuI (L3), via solvent volatilization, demonstrating exceptional water stability even after 27 days of submersion.

View Article and Find Full Text PDF

Background/objectives: Vaccines have been recognized as one of the most effective public health interventions. However, vaccine-associated anaphylaxis, although rare, is a serious adverse reaction. The incidence of anaphylaxis related to non-COVID-19 vaccines in adults remains underreported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!