Versatile pharmacological actions of YC-1: anti-platelet to anticancer.

Cancer Lett

Human Genome Research Institute and Cancer Research Institute, Seoul National University College of Medicine, South Korea.

Published: April 2004

Since the first article on YC-1 was published in 1994, it has been popularly used as a pharmacological tool to activate soluble guanylate cyclase and to increase cyclic GMP levels in cultured cells or isolated tissues. In terms of the pharmacological actions of YC-1, previous studies tend to be limited to it inhibition of platelet aggregation and vascular concentration. However, recent studies have demonstrated that YC-1 has versatile pharmacological effects other than the anti-platelet and vasodilatory effects. In particular, two recent reports suggest that YC-1 could be developed as a new class of anticancer agent for rapidly growing solid tumors, because it inhibits hypoxia-inducible factor 1 (HIF-1) activity, and has been reported to halt tumor growth in vivo. We here review the cyclic GMP-dependent and independent pharmacological actions of YC-1, and its anti-HIF-1, anticancer effect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2004.01.005DOI Listing

Publication Analysis

Top Keywords

pharmacological actions
12
actions yc-1
12
versatile pharmacological
8
yc-1
6
yc-1 anti-platelet
4
anti-platelet anticancer
4
anticancer article
4
article yc-1
4
yc-1 published
4
published 1994
4

Similar Publications

Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.

View Article and Find Full Text PDF

Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.

View Article and Find Full Text PDF

Based on network pharmacology and molecular docking methods, this study explored its active compounds and confirmed its potential mechanism of action against Hand-foot skin reaction induced by tumor-targeted drugs. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and UniProt Database were used to obtain the active ingredients and target proteins of Spatholobi Caulis. All hand-foot skin reaction (HFSR)-related targets were obtained with the help of the Human Gene Database, Online Mendelian Inheritance in Humans (OMIM), DisGeNET and DrugBank databases.

View Article and Find Full Text PDF

Research progress on the structural and anti-colorectal malignant tumor properties of Shikonin.

J Cancer Res Ther

December 2024

Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China.

Colorectal cancer is the third most prevalent malignant tumor worldwide. Despite the advancements in surgical procedures and treatment options, CRC remains a considerable cause of cancer-related mortality. Shikonin is a naphthoquinone compound that exhibits multiple biological activities, including anti-inflammatory and anti-tumor effects as well as wound healing promotion.

View Article and Find Full Text PDF

This study aimed to compare the inhibitory effect of flunixin meglumine and meloxicam on the smooth muscles of the gastrointestinal tract in male cattle. Tissue samples, including the abomasum, ileum, proximal loop and centripetal gyri of the ascending colon, were collected from routinely slaughtered male cattle. These samples were sectioned into strips and mounted in an isolated tissue bath system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!