We have examined the expression of pnp encoding the 3'-5'-exoribonuclease, polynucleotide phosphorylase, in Streptomyces antibioticus. We show that the rpsO-pnp operon is transcribed from at least two promoters, the first producing a readthrough transcript that includes both pnp and the gene for ribosomal protein S15 (rpsO) and a second, Ppnp, located in the rpsO-pnp intergenic region. Unlike the situation in Escherichia coli, where observation of the readthrough transcript requires mutants lacking RNase III, we detect readthrough transcripts in wild-type S. antibioticus mycelia. The Ppnp transcriptional start point was mapped by primer extension and confirmed by RNA ligase-mediated reverse transcription-PCR, a technique which discriminates between 5' ends created by transcription initiation and those produced by posttranscriptional processing. Promoter probe analysis demonstrated the presence of a functional promoter in the intergenic region. The Ppnp sequence is similar to a group of promoters recognized by the extracytoplasmic function sigma factors, sigma-R and sigma-E. We note a number of other differences in rspO-pnp structure and function between S. antibioticus and E. coli. In E. coli, pnp autoregulation and cold shock adaptation are dependent upon RNase III cleavage of an rpsO-pnp intergenic hairpin. Computer modeling of the secondary structure of the S. antibioticus readthrough transcript predicts a stem-loop structure analogous to that in E. coli. However, our analysis suggests that while the readthrough transcript observed in S. antibioticus may be processed by an RNase III-like activity, transcripts originating from Ppnp are not. Furthermore, the S. antibioticus rpsO-pnp intergenic region contains two open reading frames. The larger of these, orfA, may be a pseudogene. The smaller open reading frame, orfX, also observed in Streptomyces coelicolor and Streptomyces avermitilis, may be translationally coupled to pnp and the gene downstream from pnp, a putative protease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC400608 | PMC |
http://dx.doi.org/10.1128/JB.186.10.3160-3172.2004 | DOI Listing |
Resolving the molecular basis of a Mendelian condition remains challenging owing to the diverse mechanisms by which genetic variants cause disease. To address this, we developed a synchronized long-read genome, methylome, epigenome and transcriptome sequencing approach, which enables accurate single-nucleotide, insertion-deletion and structural variant calling and diploid de novo genome assembly. This permits the simultaneous elucidation of haplotype-resolved CpG methylation, chromatin accessibility and full-length transcript information in a single long-read sequencing run.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
While all native tRNAs undergo extensive post-transcriptional modifications as a mechanism to regulate gene expression, mapping these modifications remains challenging. The critical barrier is the difficulty of readthrough of modifications by reverse transcriptases (RTs). Here we use Induro-a new group-II intron-encoded RT-to map and quantify genome-wide tRNA modifications in Induro-tRNAseq.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2025
National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India. Electronic address:
The diversity of molecular entities emerging from a single gene are recognized. Several studies have thus established the cellular role(s) of transcript variants and protein isoforms. A step ahead in challenging the central dogma towards expanding molecular diversity is the identification of fusion genes, chimeric transcripts and chimeric proteins that harbor sequences from more than one gene.
View Article and Find Full Text PDFbioRxiv
January 2025
Dept. of Biochemistry, University of Colorado; Boulder, CO, 80303, USA.
CDK7 regulates RNA polymerase II (RNAPII) initiation, elongation, and termination through incompletely understood mechanisms. Because contaminating kinases precluded CDK7 analysis with nuclear extracts, we completed biochemical assays with purified factors. Reconstitution of RNAPII transcription initiation showed CDK7 inhibition slowed and/or paused RNAPII promoter-proximal transcription, which reduced re-initiation.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Medicinal Chemistry, University of Kansas, Lawrence, USA.
One of the hallmarks of RNA viruses is highly structured untranslated regions (UTRs) which are often essential for viral replication, transcription, or translation. In this report, we discovered a series of coumarin derivatives that bind to a four-way RNA helix called SL5 in the 5' UTR of the SARS-CoV-2 RNA genome. To locate the binding site, we developed a sequencing-based method namely cgSHAPE-seq, in which an acylating probe was directed to crosslink with the 2'-OH group of ribose at the binding site to create read-through mutations during reverse transcription.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!