CDC25 dual-specificity phosphatases are essential regulators that dephosphorylate and activate cyclin-dependent kinase/cyclin complexes at key transitions of the cell cycle. CDC25 activity is currently considered to be an interesting target for the development of new antiproliferative agents. Here we report the identification of a new CDC25 inhibitor and the characterization of its effects at the molecular and cellular levels, and in animal models. BN82002 inhibits the phosphatase activity of recombinant human CDC25A, B, and C in vitro. It impairs the proliferation of tumoral cell lines and increases cyclin-dependent kinase 1 inhibitory tyrosine phosphorylation. In synchronized HeLa cells, BN82002 delays cell cycle progression at G1-S, in S phase and at the G2-M transition. In contrast, BN82002 arrests U2OS cell cycle mostly in the G1 phase. Selectivity of this inhibitor is demonstrated: (a) by the reversion of the mitotic-inducing effect observed in HeLa cells upon CDC25B overexpression; and (b) by the partial reversion of cell cycle arrest in U2OS expressing CDC25. We also show that BN82002 reduces growth rate of human tumor xenografts in athymic nude mice. BN82002 is a original CDC25 inhibitor that is active both in cell and animal models. This greatly reinforces the interest in CDC25 as an anticancer target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.can-03-3984 | DOI Listing |
Ann N Y Acad Sci
January 2025
Department of Biology, University of Kentucky, Lexington, Kentucky, USA.
Spiny mice (Acomys spp.) are warm-blooded (homeothermic) vertebrates whose ability to restore missing tissue through regenerative healing has coincided with the evolution of unique cellular and physiological adaptations across different tissue types. This review seeks to explore how these bizarre rodents deploy unique or altered injury response mechanisms to either enhance tissue repair or fully regenerate excised tissue compared to closely related, scar-forming mammals.
View Article and Find Full Text PDFCancer Res
January 2025
First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Sunitinib is a first-line targeted therapy for patients with renal cell carcinoma (RCC), but resistance represents a significant obstacle to the treatment of advanced and metastatic RCC. Metabolic reprogramming is a characteristic of RCC, and changes in metabolic processes might contribute to resistance to sunitinib. Here, we identified MTHFD2, a mitochondrial enzyme involved in one-carbon metabolism, as a critical mediator of sunitinib resistance in RCC.
View Article and Find Full Text PDFG3 (Bethesda)
January 2025
Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Evidence suggests that increases in ploidy have occurred frequently in the evolutionary history of organisms and can serve adaptive functions to specialized somatic cells in multicellular organisms. However, the sudden multiplication of all chromosome content may present physiological challenges to the cells in which it occurs. Experimental studies have associated increases in ploidy with reduced cell survival and proliferation.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Molecular Biology Vadi Kampüsü, Istanbul Atlas University, Anadolu Cd., No 40, Kağıthane, Istanbul, 34408, Turkey.
Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India.
This review explores the current understanding and recent advancements in neuroblastoma, one of the most common extracranial solid pediatric cancers, accounting for ~ 15% of childhood cancer-related mortality. The hallmarks of NBL, including angiogenesis, metastasis, apoptosis resistance, cell cycle dysregulation, drug resistance, and responses to hypoxia and ROS, underscore its complex biology. The tumor microenvironment's significance in disease progression is acknowledged in this study, along with the pivotal role of cancer stem cells in sustaining tumor growth and heterogeneity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!