DNA repair via the homologous recombination pathway requires the recombinase RAD51 and, in vertabrates, five RAD51 paralogs. The paralogs form two complexes in solution, a XRCC3/RAD51C heterodimer and a RAD51B/RAD51C/RAD51D/XRCC2 heterotetramer. Mutation of any one of the five paralog genes prevents subnuclear assembly of recombinase at damaged sites and renders cells 30-100 fold sensitive to DNA cross-linking drugs. Phage display was used to isolate peptides that bind the paralog XRCC3. Sequences of binding peptides showed similarity to residues 14-25 of RAD51C protein. Point mutations in this region of RAD51C altered its interaction with both XRCC3 and RAD51B in a two-hybrid system. A synthetic peptide composed of residues 14-25 of RAD51C fused to a membrane transduction sequence [protein transduction domain 4 (PTD4)], inhibited subnuclear assembly of RAD51 recombinase, and sensitized Chinese hamster ovary cells to cisplatin when added to growth medium. These results suggest that residues 14-25 of RAD51C contribute to a "hot spot" used in both XRCC3-RAD51C and RAD51B-RAD51C interactions. Peptide-based inhibition of homologous recombination may prove useful for improving the efficacy of existing cancer therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.can-03-3608DOI Listing

Publication Analysis

Top Keywords

residues 14-25
12
14-25 rad51c
12
cells cisplatin
8
homologous recombination
8
subnuclear assembly
8
rad51c
5
hot spot
4
spot rad51c
4
rad51c interactions
4
interactions revealed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!